본 논문에서는 인간의 시각적 특성을 반영한 Just Noticeable Difference (JND) 모델을 사용한 움직임 예측을 통한 프레임율 향상 기법을 제안한다. 기존의 다중 프레임 기반 움직임 예측을 통한 프레임율 향상 기법은 움직임 벡터의 정확성을 높이기 위해 다중 프레임을 사용하며, 전체 영역에 대해 같은 블록 크기와 탐색 영역으로 움직임 예측을 수행함으로써 불필요한 계산량이 많아지고 움직임 벡터의 부정확한 예측이 수행된다는 단점이 있다. 제안하는 알고리듬은 인간의 시각적 특성을 고려한 Free Energy-based Just Noticeable Difference (FEJND) 모델을 사용하여 이전 프레임과 현재 프레임만을 사용하여 영역 특성에 따른 적응적 움직임 예측을 수행하여 정확성을 높인다. 실험 결과에 따라 제안하는 알고리듬의 성능이 향상되었음을 알 수 있다.
다중 센서의 영상, 예를 들어 가시광 영상과 적외선 영상은 서로 다른 특징을 가지고 있기 때문에 본 논문에서는 IR 영상의 특징을 보존한 새로운 혼합기법을 제안하다. 이러한 혼합기법은 의료 영상, 보안 영상 등에서 매우 중요하고 다양하게 다루어진다. 일반적인 혼합기법을 사용하게 되면 영상간의 특색 때문에 혼합 시 조화롭지 못하는 문제점을 가진다. 이러한 문제점을 해결하기 위해서 본 논문에서는 중요도 맵을 추출하고 그 영역에 대하여 포아송 블랜딩을 통해 두 개의 다른 특징을 가시광 영상을 혼합한다. 제안한 알고리즘은 기존의 연구와 다르게 혼합할 영역을 수동으로 지정하는 것이 아니라 자동적으로 추출하고, 가시광 영상에 IR 영상에서만 검출되는 영역을 결합한 새로운 결과를 얻을 수 있었다.
프로세서와 메모리 간의 속도 차이로 인해 메모리 시스템의 성능 향상이 프로세서의 성능을 높이기 위한 중요한 요인이 되었고, 이를 위해 캐시 미스율을 감소시키는 방법이 연구되고 있다. 데이터 프리페치는 캐시의 미스율을 감소시키는 기법 중 하나이며 실제로 최근 프로세서에서 메모리 시스템의 성능을 향상시키기 위해 사용된다. 데이터 프리페치를 효과적으로 수행하기 위해서 메모리 주소의 접근 패턴을 파악하는 것이 중요하며, 이를 위해 순차적으로 접근하는 경우, 한 종류의 1 보다 크거나 같은 간격(stride)으로 뛰면서 접근하는 경우, 다수의 간격이 규칙적으로 반복되며 접근하는 경우 등의 다양한 패턴을 찾는 프리페치 기법들이 등장했다. 본 논문에서 소개하는 다중 간격 프리페치의 경우, 메모리 공간을 메모리 주소의 일부 상위 비트를 통해 여러 개의 영역으로 나누고, 하나의 패턴을 하나의 영역 안에서만 학습하여, 다른 영역에 속한 메모리 주소 접근 시 현재 학습하는 패턴에 어긋나는 주소라고 여기기 때문에 학습을 방해하지 않도록 하였다. 그러나 이 방법은 영역의 크기보다 같은 패턴을 갖는 메모리 주소 스트림의 크기가 더 클 때, 접근 주소의 영역이 바뀜으로 인해 불필요한 학습을 추가적으로 해야 하는 문제점이 있다. 이에 본 논문에서 인접 영역 테이블(ART: Adjacent Region Table)을 이용하여 같은 패턴을 갖는 메모리 접근 스트림의 크기가 영역의 크기보다 클 경우, 기존의 학습된 패턴대로 프리페치를 수행할 수 있도록 하였다. 본 논문에서 제안한 알고리즘으로 실험한 결과, 기존의 다중 간격 프리페치보다 캐시 미스율을 약 6.7% 낮췄고, 시스템 전체의 성능의 지표인 IPC의 경우, 약 5.78% 높아지는 성능 향상의 결과를 얻었다.
본 논문에서는 배경과 객체의 색상이 유사한 상황에서 강인한 정규 상관도(Normalized Cross Correlation) 기반 다중 시점 배경 차분 기법을 제안한다. 인위적으로 배경을 구성한 경우가 아닐 경우, 다중 시점 영상의 배경 영상에서 객체로 인해 가려지게 되는 영역들은 서로 다른 색상을 가지고 있을 확률이 높다. 그러나 객체의 등장으로 인해 이러한 영역들은 서로 유사한 색상을 가지게 된다. 이에 기반하여 본 논문은 GoNCC(Graph of Normalized Cross Correlation)을 제안한다. GoNCC는 임의 시점 영상의 한 화소와 에피폴라 제약조건 관계에 있는 인접 영상 내 화소와 해당 화소와의 정규 상관도 값의 분포를 의미한다. 제안하는 다중 시점 배경 차분 기법은 현재 영상의 GoNCC와 배경 영상의 GoNCC를 비교함으로써 이루어진다. 계산량을 줄이기 위해 다중 시점 배경 차분 기법을 모든 화소에 적용하지 않고 간단한 단일 시점 배경 차분 기법으로 판단하기 어려운 영역에 대해서만 제안 방법을 수행한다. 실험 결과 단순한 단일 시점 배경 차분 기법에 비하여 매우 우수한 성능을 보였고, 기존의 다중 시점 배경 차분 기법에 비해서도 보다 정확하게 객체 영역을 검출하는 것을 확인하였다.
본 논문에서는 센서 융합과 배경 추정 기법을 이용하여 연속된 영상에서 물체 영역을 검출하는 기법을 제안하였다. IR/CCD각각의 카메라로부터 얻은 입력 영상을 정렬하고 융합하는 과정을 거친 후, 각 화소 단위의 배경 모델을 추정하고 시간이 지남에 따라 이를 갱신함으로써 물체 영역을 효과적으로 검출하는 기법을 제시하고 있다. 실험은 차량을 대상으로 하였고, 카메라가 움직이는 상황과 비교적 복잡한 환경에서도 좋은 결과를 얻을 수 있었다.
부인봉쇄 서명 기법은 서명자의 동의 없이는 서명을 검증할 수 없는 기법이다. 일반 서명기법이 적용될 수 없는 많은 사회적 영역의 컴퓨터화에 사용될 수 있다. 본 연구에서는 여러 서명자를 필요로 하며 지정된 사용자에게만 다중 서명을 검증할 수 있도록 하는 부인봉쇄 다중서명 기법을 제안한다. 제안한 다중서명 기법은 부인봉쇄 성질을 만족하며 서명자에 의한 다중서명 부정 및 변조 공격에 대해서 안전하다. 또한 제안한 기법의 응용으로써 공동 저작된 디지털콘텐츠에 대한 저작권 보호 방안에 대해서 제안한다.
본 논문에서는 정확한 3차원 장면복원을 위한 다중깊이맵 융합기법을 제안한다. 제안한 기법은 수동적 3차원 정보획득 방법인 스테레오 정합기법과 능동적 3차원 정보획득 방법인 깊이정보 카메라로부터 얻어진 다중깊이맵을 융합한다. 전통적인 두 개의 스테레오 영상 간에 변이정보를 추정하는 전통적 스테레오 정합기법은 차폐 영역과 텍스쳐가 적은 영역에서 변이 오차를 많이 발생한다. 또한 깊이정보 카메라를 이용한 깊이맵은 비교적 정확한 깊이정보를 얻을 수 있으나, 잡음이 많이 포함되며, 측정 가능한 깊이의 범위가 제한되어 있다. 따라서 본 논문에서는 이러한 두 기법의 단점을 극복하고, 상호 보완하기 위하여 이 두 기법에 의해 얻어진다. 중깊이맵의 변이 또는 깊이값을 적절하게 선택하기 위한 깊이맵 융합기법을 제안한다. 3-시점 영상으로부터 가운데 시점을 기준으로 좌우 영상에 대해 두 개의 변이맵들을 각각 얻으며, 가운데 시점 카메라에 설치된 깊이정보 카메라로부터 얻어진 깊이맵들 간에 위치와 깊이값을 일치시키기 위한 전처리를 행한 다음. 각 화소 위치의 텍스쳐 정보, 깊이맵 분포 등에 기반하여 적절한 깊이값을 선택한다. 제안한 기법의 컴퓨터 모의실험 결과. 일부 배경 영역에서 깊이맵의 정확도가 개선됨을 볼 수 있었다.
본 논문에서는 실시간 CCD 카메라 입력 영상으로부터 다중 컬러 정보를 이용하여 얼굴 영역을 검출 및 추적하고 기울어진 얼굴을 보정하는 알고리즘을 제안하였다. 제안한 알고리즘은 먼저 획득된 RGB 영상에서 YCbCr컬러 모델과 YIQ컬러 모델로 변환한 후 Cr성분과 I성분을 추출하여 얼굴 피부색을 검출, 얼굴 영역 추출에 사용하였다. 또한 추출된 얼굴 후보 영역에서 수평, 수직 투영(Projection)정보로부터 최종 얼굴 영역으로 검출한 다음 검출된 얼굴 중심 좌표와 이전에 검출된 얼굴 중심 좌표 값을 유클리드언 거리로 얼굴을 추적하였으며 검출된 얼굴로부터 레이블링(Labeling)기법으로 눈 특징자를 검출, 눈의 기울기 각도를 보정함으로써 얼굴 기울기를 보정하였다. 제안한 얼굴 추적 및 기울기 보정 알고리즘을 사용하여 실험한 결과 다중 색상 정보를 사용함으로써 주위환경 변화에 강인하게 실시간 얼굴 영역 김출 및 추적이 가능하였고, 기울어진 얼굴 영상을 자동 보정함으로써 인식에 용이하였다.
본 논문은 다중 도메인 학습을 이용하여 화면 촬영 영상 내 모아레 무늬를 효과적으로 제거하는 기법을 제안한다. 제안하는 기법은 먼저 화소값 영역과 주파수 영역에서 입력 영상의 모아레 무늬를 각각 제거한다. 다음으로 모아레 영상에서 clean edge map을 추정하고, 추정된 clean edge map을 가이드 정보로 사용하여 화소값 영역과 주파수 영역에서 얻은 결과 영상의 품질을 향상시킨다. 마지막으로, 독립적으로 향상된 두 결과 영상을 적응적으로 결합하며 모아레 무늬가 제거된 최종 결과 영상을 생성한다. 컴퓨터 모의 실험결과를 통해 제안하는 기법이 기존의 알고리즘보다 모아레 무늬를 더욱 효과적으로 제거할 수 있음을 확인한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.