• 제목/요약/키워드: 다중영역 기법

검색결과 477건 처리시간 0.029초

프랙탈과 다중프랙탈의 연구

  • 백인수
    • 대한수학회논문집
    • /
    • 제21권3호
    • /
    • pp.409-417
    • /
    • 2006
  • 자연현상의 복잡한 대상의 연구에서 출발한 프랙탈의 연구는 물리학에서 특히 열역학에서의 기법을 활용한 다중프랙탈의 연구로까지 그 영역이 확대되었다. 이 논문에서는 프랙탈과 다중프랙탈의 여러 가지 성질과 그 응용에 대한 최근 결과를 소개한다

Free Energy Principle 기반의 Just Noticeable Difference 모델을 활용한 프레임율 향상 기법 (Frame Rate Up Conversion Method Using Free-Energy Principle based Just Noticeable Difference)

  • 강주미;박대준;정제창
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2016년도 하계학술대회
    • /
    • pp.215-219
    • /
    • 2016
  • 본 논문에서는 인간의 시각적 특성을 반영한 Just Noticeable Difference (JND) 모델을 사용한 움직임 예측을 통한 프레임율 향상 기법을 제안한다. 기존의 다중 프레임 기반 움직임 예측을 통한 프레임율 향상 기법은 움직임 벡터의 정확성을 높이기 위해 다중 프레임을 사용하며, 전체 영역에 대해 같은 블록 크기와 탐색 영역으로 움직임 예측을 수행함으로써 불필요한 계산량이 많아지고 움직임 벡터의 부정확한 예측이 수행된다는 단점이 있다. 제안하는 알고리듬은 인간의 시각적 특성을 고려한 Free Energy-based Just Noticeable Difference (FEJND) 모델을 사용하여 이전 프레임과 현재 프레임만을 사용하여 영역 특성에 따른 적응적 움직임 예측을 수행하여 정확성을 높인다. 실험 결과에 따라 제안하는 알고리듬의 성능이 향상되었음을 알 수 있다.

  • PDF

포아송 블랜딩을 통한 다중센서 영상 결합 (Multi-Sensor Image Fusion for Poisson Blending)

  • 김성용;강행봉
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2012년도 춘계학술발표대회논문집
    • /
    • pp.262-263
    • /
    • 2012
  • 다중 센서의 영상, 예를 들어 가시광 영상과 적외선 영상은 서로 다른 특징을 가지고 있기 때문에 본 논문에서는 IR 영상의 특징을 보존한 새로운 혼합기법을 제안하다. 이러한 혼합기법은 의료 영상, 보안 영상 등에서 매우 중요하고 다양하게 다루어진다. 일반적인 혼합기법을 사용하게 되면 영상간의 특색 때문에 혼합 시 조화롭지 못하는 문제점을 가진다. 이러한 문제점을 해결하기 위해서 본 논문에서는 중요도 맵을 추출하고 그 영역에 대하여 포아송 블랜딩을 통해 두 개의 다른 특징을 가시광 영상을 혼합한다. 제안한 알고리즘은 기존의 연구와 다르게 혼합할 영역을 수동으로 지정하는 것이 아니라 자동적으로 추출하고, 가시광 영상에 IR 영상에서만 검출되는 영역을 결합한 새로운 결과를 얻을 수 있었다.

  • PDF

인접 영역 테이블을 이용한 다중 간격 프리페치 기법 (Multi-Strided Prefetching Using Adjacent Region Table)

  • 심재성;전호윤;이용석
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2014년도 추계학술발표대회
    • /
    • pp.37-40
    • /
    • 2014
  • 프로세서와 메모리 간의 속도 차이로 인해 메모리 시스템의 성능 향상이 프로세서의 성능을 높이기 위한 중요한 요인이 되었고, 이를 위해 캐시 미스율을 감소시키는 방법이 연구되고 있다. 데이터 프리페치는 캐시의 미스율을 감소시키는 기법 중 하나이며 실제로 최근 프로세서에서 메모리 시스템의 성능을 향상시키기 위해 사용된다. 데이터 프리페치를 효과적으로 수행하기 위해서 메모리 주소의 접근 패턴을 파악하는 것이 중요하며, 이를 위해 순차적으로 접근하는 경우, 한 종류의 1 보다 크거나 같은 간격(stride)으로 뛰면서 접근하는 경우, 다수의 간격이 규칙적으로 반복되며 접근하는 경우 등의 다양한 패턴을 찾는 프리페치 기법들이 등장했다. 본 논문에서 소개하는 다중 간격 프리페치의 경우, 메모리 공간을 메모리 주소의 일부 상위 비트를 통해 여러 개의 영역으로 나누고, 하나의 패턴을 하나의 영역 안에서만 학습하여, 다른 영역에 속한 메모리 주소 접근 시 현재 학습하는 패턴에 어긋나는 주소라고 여기기 때문에 학습을 방해하지 않도록 하였다. 그러나 이 방법은 영역의 크기보다 같은 패턴을 갖는 메모리 주소 스트림의 크기가 더 클 때, 접근 주소의 영역이 바뀜으로 인해 불필요한 학습을 추가적으로 해야 하는 문제점이 있다. 이에 본 논문에서 인접 영역 테이블(ART: Adjacent Region Table)을 이용하여 같은 패턴을 갖는 메모리 접근 스트림의 크기가 영역의 크기보다 클 경우, 기존의 학습된 패턴대로 프리페치를 수행할 수 있도록 하였다. 본 논문에서 제안한 알고리즘으로 실험한 결과, 기존의 다중 간격 프리페치보다 캐시 미스율을 약 6.7% 낮췄고, 시스템 전체의 성능의 지표인 IPC의 경우, 약 5.78% 높아지는 성능 향상의 결과를 얻었다.

3차원 객체 복원을 위한 정규 상관도 기반 다중 시점 배경 차분 기법 (Normalized Cross Correlation-based Multiview background Subtraction for 3D Object Reconstruction)

  • 팽경현;황성수;김희동;김수정;유지성;김성대
    • 전자공학회논문지
    • /
    • 제50권6호
    • /
    • pp.228-237
    • /
    • 2013
  • 본 논문에서는 배경과 객체의 색상이 유사한 상황에서 강인한 정규 상관도(Normalized Cross Correlation) 기반 다중 시점 배경 차분 기법을 제안한다. 인위적으로 배경을 구성한 경우가 아닐 경우, 다중 시점 영상의 배경 영상에서 객체로 인해 가려지게 되는 영역들은 서로 다른 색상을 가지고 있을 확률이 높다. 그러나 객체의 등장으로 인해 이러한 영역들은 서로 유사한 색상을 가지게 된다. 이에 기반하여 본 논문은 GoNCC(Graph of Normalized Cross Correlation)을 제안한다. GoNCC는 임의 시점 영상의 한 화소와 에피폴라 제약조건 관계에 있는 인접 영상 내 화소와 해당 화소와의 정규 상관도 값의 분포를 의미한다. 제안하는 다중 시점 배경 차분 기법은 현재 영상의 GoNCC와 배경 영상의 GoNCC를 비교함으로써 이루어진다. 계산량을 줄이기 위해 다중 시점 배경 차분 기법을 모든 화소에 적용하지 않고 간단한 단일 시점 배경 차분 기법으로 판단하기 어려운 영역에 대해서만 제안 방법을 수행한다. 실험 결과 단순한 단일 시점 배경 차분 기법에 비하여 매우 우수한 성능을 보였고, 기존의 다중 시점 배경 차분 기법에 비해서도 보다 정확하게 객체 영역을 검출하는 것을 확인하였다.

다중센서 융합과 배경 추정을 이용한 물체 영역 검출 (Object Region Detection using Multi-Sensor Fusion and Background Estimation)

  • 조주현;최해철;이진성;신호철;김성대
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 제14회 신호처리 합동 학술대회 논문집
    • /
    • pp.443-446
    • /
    • 2001
  • 본 논문에서는 센서 융합과 배경 추정 기법을 이용하여 연속된 영상에서 물체 영역을 검출하는 기법을 제안하였다. IR/CCD각각의 카메라로부터 얻은 입력 영상을 정렬하고 융합하는 과정을 거친 후, 각 화소 단위의 배경 모델을 추정하고 시간이 지남에 따라 이를 갱신함으로써 물체 영역을 효과적으로 검출하는 기법을 제시하고 있다. 실험은 차량을 대상으로 하였고, 카메라가 움직이는 상황과 비교적 복잡한 환경에서도 좋은 결과를 얻을 수 있었다.

  • PDF

디지털 콘텐츠 공동 저작권 보호에 적합한 부인봉쇄 디지털 다중서명 기법 (The Undeniable Digital Multi-signature Scheme Suitable for Joint Copyright Protection on Digital Contents)

  • 윤성현
    • 한국콘텐츠학회논문지
    • /
    • 제5권1호
    • /
    • pp.55-63
    • /
    • 2005
  • 부인봉쇄 서명 기법은 서명자의 동의 없이는 서명을 검증할 수 없는 기법이다. 일반 서명기법이 적용될 수 없는 많은 사회적 영역의 컴퓨터화에 사용될 수 있다. 본 연구에서는 여러 서명자를 필요로 하며 지정된 사용자에게만 다중 서명을 검증할 수 있도록 하는 부인봉쇄 다중서명 기법을 제안한다. 제안한 다중서명 기법은 부인봉쇄 성질을 만족하며 서명자에 의한 다중서명 부정 및 변조 공격에 대해서 안전하다. 또한 제안한 기법의 응용으로써 공동 저작된 디지털콘텐츠에 대한 저작권 보호 방안에 대해서 제안한다.

  • PDF

깊이정보 카메라 및 다시점 영상으로부터의 다중깊이맵 융합기법 (Multi-Depth Map Fusion Technique from Depth Camera and Multi-View Images)

  • 엄기문;안충현;이수인;김강연;이관행
    • 방송공학회논문지
    • /
    • 제9권3호
    • /
    • pp.185-195
    • /
    • 2004
  • 본 논문에서는 정확한 3차원 장면복원을 위한 다중깊이맵 융합기법을 제안한다. 제안한 기법은 수동적 3차원 정보획득 방법인 스테레오 정합기법과 능동적 3차원 정보획득 방법인 깊이정보 카메라로부터 얻어진 다중깊이맵을 융합한다. 전통적인 두 개의 스테레오 영상 간에 변이정보를 추정하는 전통적 스테레오 정합기법은 차폐 영역과 텍스쳐가 적은 영역에서 변이 오차를 많이 발생한다. 또한 깊이정보 카메라를 이용한 깊이맵은 비교적 정확한 깊이정보를 얻을 수 있으나, 잡음이 많이 포함되며, 측정 가능한 깊이의 범위가 제한되어 있다. 따라서 본 논문에서는 이러한 두 기법의 단점을 극복하고, 상호 보완하기 위하여 이 두 기법에 의해 얻어진다. 중깊이맵의 변이 또는 깊이값을 적절하게 선택하기 위한 깊이맵 융합기법을 제안한다. 3-시점 영상으로부터 가운데 시점을 기준으로 좌우 영상에 대해 두 개의 변이맵들을 각각 얻으며, 가운데 시점 카메라에 설치된 깊이정보 카메라로부터 얻어진 깊이맵들 간에 위치와 깊이값을 일치시키기 위한 전처리를 행한 다음. 각 화소 위치의 텍스쳐 정보, 깊이맵 분포 등에 기반하여 적절한 깊이값을 선택한다. 제안한 기법의 컴퓨터 모의실험 결과. 일부 배경 영역에서 깊이맵의 정확도가 개선됨을 볼 수 있었다.

다중 컬러 모델을 이용한 실시간 얼굴 추적 및 기울기 보정 알고리즘 (Real-time Face Tracking Using Multi Color Model and Face Gradient Correction Algorithm)

  • 석영수;이응주
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2003년도 춘계학술발표대회논문집
    • /
    • pp.488-491
    • /
    • 2003
  • 본 논문에서는 실시간 CCD 카메라 입력 영상으로부터 다중 컬러 정보를 이용하여 얼굴 영역을 검출 및 추적하고 기울어진 얼굴을 보정하는 알고리즘을 제안하였다. 제안한 알고리즘은 먼저 획득된 RGB 영상에서 YCbCr컬러 모델과 YIQ컬러 모델로 변환한 후 Cr성분과 I성분을 추출하여 얼굴 피부색을 검출, 얼굴 영역 추출에 사용하였다. 또한 추출된 얼굴 후보 영역에서 수평, 수직 투영(Projection)정보로부터 최종 얼굴 영역으로 검출한 다음 검출된 얼굴 중심 좌표와 이전에 검출된 얼굴 중심 좌표 값을 유클리드언 거리로 얼굴을 추적하였으며 검출된 얼굴로부터 레이블링(Labeling)기법으로 눈 특징자를 검출, 눈의 기울기 각도를 보정함으로써 얼굴 기울기를 보정하였다. 제안한 얼굴 추적 및 기울기 보정 알고리즘을 사용하여 실험한 결과 다중 색상 정보를 사용함으로써 주위환경 변화에 강인하게 실시간 얼굴 영역 김출 및 추적이 가능하였고, 기울어진 얼굴 영상을 자동 보정함으로써 인식에 용이하였다.

  • PDF

다중 도메인 학습을 이용한 화면 촬영 영상 내 모아레 무늬 제거 기법 (Screen-shot Image Demorieing Using Multiple Domain Learning)

  • 박현국;비엔지아안;이철
    • 방송공학회논문지
    • /
    • 제26권1호
    • /
    • pp.3-13
    • /
    • 2021
  • 본 논문은 다중 도메인 학습을 이용하여 화면 촬영 영상 내 모아레 무늬를 효과적으로 제거하는 기법을 제안한다. 제안하는 기법은 먼저 화소값 영역과 주파수 영역에서 입력 영상의 모아레 무늬를 각각 제거한다. 다음으로 모아레 영상에서 clean edge map을 추정하고, 추정된 clean edge map을 가이드 정보로 사용하여 화소값 영역과 주파수 영역에서 얻은 결과 영상의 품질을 향상시킨다. 마지막으로, 독립적으로 향상된 두 결과 영상을 적응적으로 결합하며 모아레 무늬가 제거된 최종 결과 영상을 생성한다. 컴퓨터 모의 실험결과를 통해 제안하는 기법이 기존의 알고리즘보다 모아레 무늬를 더욱 효과적으로 제거할 수 있음을 확인한다.