• Title/Summary/Keyword: 다중시기 영상분석

Search Result 74, Processing Time 0.023 seconds

Atmospheric Correction Effectiveness Analysis of Reflectance and NDVI Using Multispectral Satellite Image (다중분광위성자료의 대기보정에 따른 반사도 및 식생지수 분석)

  • Ahn, Ho-yong;Na, Sang-il;Park, Chan-won;So, Kyu-ho;Lee, Kyung-do
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.981-996
    • /
    • 2018
  • In agriculture, remote sensing data using earth observation satellites have many advantages over other methods in terms of time, space, and efficiency. This study analyzed the changes of reflectance and vegetation index according to atmospheric correction of images before using satellite images in agriculture. Top OF Atmosphere (TOA) reflectance and surface reflectance through atmospheric correction were calculated to compare the reflectance of each band and Normalized Vegetation difference Index (NDVI). As a result, the NDVI observed from field measurement sensors and satellites showed a higher agreement and correlation than the TOA reflectance calculated from surface reflectance using atmospheric correction. Comparing NDVI before and after atmospheric correction for multi-temporal images, NDVI increased after atmospheric corrected in all images. garlic and onion cultivation area and forest where the vegetation health was high area NDVI increased more 0.1. Because the NIR images are included in the water vapor band, atmospheric correction is greatly affected. Therefore, atmospheric correction is a very important process for NDVI time-series analysis in applying image to agricultural field.

Estimating Leaf Nitrogen Content of Rice Canopies Using Ground Sensors and Satellite Imagery (지상센서와 위성영상을 이용한 벼 군락의 엽 질소함량 추정)

  • Hong Suk-Young;Kim Yi-Hyun;Choi Chul-Uong;Lee Jee-Min;Lee Jae-Jung;Rim Sang-Kyu;Kwak Han-Kang
    • Proceedings of the KSRS Conference
    • /
    • 2006.03a
    • /
    • pp.193-197
    • /
    • 2006
  • 지상측정 및 위성영상탑재 광학센서를 이용하여 벼 주요 생육시기에 대한 군락의 엽질소 함량을 추정하였다. 6월부터 10월에 걸쳐 주요 생육시기 $5{\sim}6$회에 걸쳐 Orbview 및 QuickBird와 같이 4m 이하의 고해상도 다중영상을 취득하였다. 위성영상 취득일에 가능한한 맞추어 인공광원을 사용하는 2종의 능동형 광학 (G)NDVI 센서를 이용한 벼 군락의 반사특성을 측정하였으며 동시에 식물체 샘플링을 통한 생육량, 엽면적지수, 엽질소 함량 등을 분석하였다. 시기별 영상의 분광반사특성 및 (G)NDVI와 벼 생육량 및 엽질소 함량과의 관계를 알아보기 위해 상관분석 및 회귀분석을 수행하였다. 지상센서 및 위성영상 유래 (G)NDVI의 값을 서로 비교해 보면 전체적으로 지상센서를 이용하여 측정한 (G)NDVI값이 위성영상 유래 (G)NDVI값보다 크게 나타났다. 하지만 두 센서 모두 엽면적지수 변화에 따른 (G)NDVI의 변화를 살펴보면 엽면적지수가 2 정도가 될 때까지는 함께 증가하다가 2보다 커지면서는 변화가 없이 머무르는 경향은 같게 나타났다. 엽면적지수의 변화는 군락의 엽질소함량 변화와 선형적인 관계($R^2=0.80$)로 나타났다. 분얼기부터 성숙초기까지의 자료를 이용하여 지상센서 및 위성영상 유래 (G)NDVI를 이용한 벼 군락의 엽질소 함량과의 관계를 살펴보니 지수함수적 관계($R^2=0.90$)로 나타났다. 위성영상 유래 (G)NDVI를 이용한 벼 군락의 엽질소 함량 추정식을 이용하여 신평면 최고쌀 생산단지에 대한 엽질소 함량 지도를 작성하였다.

  • PDF

Analysis of Land Use Pattern Change of Sub-Watershed -Focused on Moyar, India- (유역하류지역의 토지이용변화 분석 -인도 Moyar유역을 중심으로-)

  • Malini, Ponnusamy;Yeu, Yeon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.2
    • /
    • pp.87-92
    • /
    • 2010
  • Large pressure on the growing population has increased rapid change in the LULC (land use/land cover) patterns in the watershed area. Spatial distribution of LULC information and its changes are desirable for any effective planning, managing and monitoring activities. The aim of the study is to produce the 1,50,000 scaled LULC change map for the sub-watershed, Western Moyar, India using the multi-temporal satellite image dataset of IRS LISS III images for the year 1989, 1999, and 2002. About 9 classes are extracted using onscreen visual interpretation techniques for all the three years. The change detection analysis was performed using matrix method for period I (1989-1999) and period II (1999-2002). The study reveals that the changes noticed in period II (1999-2002) is comparatively more than period I (1989-1999), which is dynamic information to protect the sub-watershed area from the deterioration and paves the way to for the sustainable development.

Application of the Rule-Based Image Classification Method to Jeju Island (규칙기반 영상분류 방법의 제주도 지역의 적용)

  • Lee, Jin-A;Lee, Sung-Soon
    • Spatial Information Research
    • /
    • v.21 no.1
    • /
    • pp.63-73
    • /
    • 2013
  • Geographic features are reflected in satellite images, which contain characteristic elements. Information on changes can be obtained through a comparison of images taken at different times. If multi-temporal images can be classified through the use of an unsupervised method, this is likely to improve the accuracy of image classification and contribute to various applications. A rule-based image classification algorithm for automatic processing without human involvement has been developed, but it must be verified that its results are not affected by imperfect elements. In this study, Landsat images of Jeju Island were used to carry out a rule-based image classification. The application results were examined for complex cases, including the presence of clouds in the images, different photographed times, and the type of target area, such as city, mountain, or field. The presence of clouds did not affect calculations, and appropriate classification rules were applied, depending on the different photographed times. The expansion of the urban areas of Jeju and the increase of facilities such as vinyl greenhouses in Seoguipo were identified. Furthermore, space information changes and accurate classifications for Jeju Island were obtained. With the goal of performing high-quality unsupervised classifications, measures to generalize and improve the methods employed were searched for. The findings of this study could be used in time-series analyses of images for various applications, including urban development and environmental change monitoring.

Applicability Analysis of Drought Index using Multi-temporal NDVI in Korean Peninsula (한반도의 다중시기 NDVI를 이용한 가뭄지수 적용성 분석)

  • 신수현;국민정;이규성
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2004.03a
    • /
    • pp.203-208
    • /
    • 2004
  • NDVI (Normalized Difference Vegetation Index)는 식생의 건강상태 및 농작물 생산량 추정등에 효과적인 식생지수로, 20년 이상 축적된 MOAA NDVI data의 경우, 식생의 시기적, 계절적 변화탐지가 가능해져 이를 바탕으로 한 가뭄지수들이 개발되어 가뭄 모니터링에 사용되어지고 있다 지난 2001년, 한반도는 기상관측 이래 90년만의 강수량 최저치를 기록하여 전국적인 대 가뭄의 피해를 입었으며, 특히 북한은 유엔이 선정한 가뭄에 가장 취약한 국가로 그로 인한 식량난이 더욱 악화되고 있어 가뭄에 대한 정보는 필수적이라 할 수 있다. 이에 본 연구에서는 1994~2002년의 식물 생장기(growing season : 3~10월)동안 NDVI 10일 최대값 합성영상 (10-day maximum composite data)을 사용하여 남북한으로 나누어진 한반도를 대상으로 각각의 식생현황을 파악 및 비교하고, 산림, 농지, 도시지역별로 NDVI와 가뭄의 주원인인 강수량과의 상관관계로 그 효용성을 분석하였다. 그 결과, NDVI는 1~2개월 전 강수량의 영향이 가장 컸으며, 특히 농지지역에서의 상관계수가 높게 나타났다.

  • PDF

Identification of Palustrine Wetlands in Paldang Reservoir Using Spectral Mixture Analysis of Multi-temporal Landsat Imagery (다중시기 위성영상의 분광혼합화소분석에 의한 팔당 상수원보호구역의 소택형 습지 판별)

  • Kim, Sang-Wook;Park, Chong-Hwa
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.7 no.3
    • /
    • pp.48-55
    • /
    • 2004
  • 본 연구는 중 저해상도 위성영상을 이용하여 하천주변 습지를 판별해내는 보다 개선된 기법을 개발해 내는데 그 목적이 있다. 중 저해상도 위성영상의 하나의 화소는 일반적으로 하나의 동질한 물체의 분광반사값을 나타내기보다는 다양한 분광값을 가진 물체들의 대표값으로 나타나게 된다. 특히 본 연구에서는 식생, 수문 및 토양요소의 혼합체인 습지의 판별을 위해서, 하나의 화소가 하나의 물체를 대표함을 전제로 하는 기존의 분석방법 보다는, 혼합화소 (mixed pixel)를 대상지 의 토지 피복을 가장 잘 반영 하는 순수한 화소값(endmember)들로 분해함으로써 보다 정확한 판별 및 분류를 가능케 하고자 하였다. 이를 위하여 일반적으로 극세분광 위성영상의 분석에 활용되는 기법인 분광혼합화소분석(Spectral Mixture Analysis)을 이용하였는데, 습지 각 화소의 식생, 수문 및 토양요소의 흔합정도를 분해한 후, 이들의 분할영상 (fraction images)을 추출해내고 이를 분석에 이용하였다. 팔당상수원보호구역의 소택형 습지를 대상으로 봄 가을의 Landsat 영상에 대한 분석을 수행하였으며, 도출된 결과는 다음과 같다. 첫째, 봄 가을 각각의 영상에 대하여 4개씩 endmember를 선정하였으며, 분할영상과 원자료 각각에 대하여 습지판별을 수행한 결과, 가을영상에 대하여 분할영상을 이용한 방법의 소택 형 습지 판별 정확도가 가장 높은 값을 보여주었다(생산자 정확도 : 83.3%, 사용자 정확도 : 86.5%). 둘째, 소택형 습지로 판별된 지역만을 대상으로 보다 세분화된 분류가 가능한 지 알아보기 위하여 소택형 습지로 판별된 지역의 영상에 대해 ISODATA 무감독분류를 수행한 결과 2개의 클러스터로 대별되었다. 현장조사, 기존 연구의 수심자료 및 식생에 대한 조사를 바탕으로 위의 2개의 클러스터를 조사한 결과, 수문조건에 따른 분류인 아계(subsystem) 단계의 '영구적 침수형 소택형 습지'와 '계절적 침수형 소택형 습지'로 분류할 수 있었다.

Accuracy analysis of Multi-series Phenological Landcover Classification Using U-Net-based Deep Learning Model - Focusing on the Seoul, Republic of Korea - (U-Net 기반 딥러닝 모델을 이용한 다중시기 계절학적 토지피복 분류 정확도 분석 - 서울지역을 중심으로 -)

  • Kim, Joon;Song, Yongho;Lee, Woo-Kyun
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.409-418
    • /
    • 2021
  • The land cover map is a very important data that is used as a basis for decision-making for land policy and environmental policy. The land cover map is mapped using remote sensing data, and the classification results may vary depending on the acquisition time of the data used even for the same area. In this study, to overcome the classification accuracy limit of single-period data, multi-series satellite images were used to learn the difference in the spectral reflectance characteristics of the land surface according to seasons on a U-Net model, one of the deep learning algorithms, to improve classification accuracy. In addition, the degree of improvement in classification accuracy is compared by comparing the accuracy of single-period data. Seoul, which consists of various land covers including 30% of green space and the Han River within the area, was set as the research target and quarterly Sentinel-2 satellite images for 2020 were aquired. The U-Net model was trained using the sub-class land cover map mapped by the Korean Ministry of Environment. As a result of learning and classifying the model into single-period, double-series, triple-series, and quadruple-series through the learned U-Net model, it showed an accuracy of 81%, 82% and 79%, which exceeds the standard for securing land cover classification accuracy of 75%, except for a single-period. Through this, it was confirmed that classification accuracy can be improved through multi-series classification.

Ground Subsidence Measurements of Noksan National Industrial Complex using C-band Multi-temporal SAR images (C-밴드 다중시기 SAR 위성 영상을 이용한 녹산국가산업단지 일대의 지반침하 관측)

  • Cho, Minji;Lee, Chang-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.2
    • /
    • pp.161-172
    • /
    • 2014
  • Established in the lower reaches of the Nakdong river in Busan, the Noksan national industrial complex is one of the deepest soft ground areas in Korea. In case of the costal landfill having deep soft ground, there is a significant residual settlement over a long period of time. In this study, there was observed ground subsidence occurred in the Noksan national industrial complex from September 2002 to April 2007 by applying DInSAR and SBAS time series method using RADARSAT-1 and Envisat SAR datasets. As a result, it was calculated that ground subsidence developed at the velocity of about maximum 10 cm/yr and mean 6 cm/yr at the eastern center, west, western center and southern area contiguous on the coastline of the study area during the period from September 2002 to April 2007. In addition, the RADARSAT-1 average displacement map has been compared with the total displacement map observed by accurate magnetic probe extensometer during the period from 2001 to 2002. Since the time series displacement has shown a linear trend mostly, we consider that continuous monitoring should be needed until the ground subsidence of the study area has been stabilized.

Analysis on the Changes of Remote Sensing Indices on Each Land Cover Before and After Heavy Rainfall Using Multi-temporal Sentinel-2 Satellite Imagery and Daily Precipitation Data (다중시기 Sentinel-2 위성영상과 일강수량 자료를 활용한 집중호우 전후의 토지피복별 원격탐사지수 변화 분석)

  • KIM, Kyoung-Seop;MOON, Gab-Su;CHOUNG, Yun-Jae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.2
    • /
    • pp.70-82
    • /
    • 2020
  • Recently, a lot of damages have been caused by urban flooding, and heavy rainfall that temporarily occur are the main causes of these phenomenons. The damages caused by urban flooding are identified as the change in the water balance in urban areas. To indirectly identify it, this research analyzed the change in the remote sensing indices on each land cover before and after heavy rainfall by utilizing daily precipitation data and multi-temporal Sentinel-2 satellite imagery. Cases of heavy rain advisory and warning were selected based on the daily precipitation data. And statistical fluctuation were compared by acquiring Sentinel-2 satellite images during the corresponding period and producing them as NDVI, NDWI and NDMI images about each land cover with a radius of 1,000 m based on the Seoul Weather Station. As a result of analyzing the maximum value, minimum value, mean and fluctuation of the pixels that were calculated in each remote sensing index image, there was no significant changes in the remote sensing indices in urban areas before and after heavy rainfall.

Analysis of Shadow Effect on High Resolution Satellite Image Matching in Urban Area (도심지역의 고해상도 위성영상 정합에 대한 그림자 영향 분석)

  • Yeom, Jun Ho;Han, You Kyung;Kim, Yong Il
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.2
    • /
    • pp.93-98
    • /
    • 2013
  • Multi-temporal high resolution satellite images are essential data for efficient city analysis and monitoring. Yet even when acquired from the same location, identical sensors as well as different sensors, these multi-temporal images have a geometric inconsistency. Matching points between images, therefore, must be extracted to match the images. With images of an urban area, however, it is difficult to extract matching points accurately because buildings, trees, bridges, and other artificial objects cause shadows over a wide area, which have different intensities and directions in multi-temporal images. In this study, we analyze a shadow effect on image matching of high resolution satellite images in urban area using Scale-Invariant Feature Transform(SIFT), the representative matching points extraction method, and automatic shadow extraction method. The shadow segments are extracted using spatial and spectral attributes derived from the image segmentation. Also, we consider information of shadow adjacency with the building edge buffer. SIFT matching points extracted from shadow segments are eliminated from matching point pairs and then image matching is performed. Finally, we evaluate the quality of matching points and image matching results, visually and quantitatively, for the analysis of shadow effect on image matching of high resolution satellite image.