• Title/Summary/Keyword: 다중세포

Search Result 108, Processing Time 0.022 seconds

Analysis of cell survival genes in human gingival fibroblasts after sequential release of trichloroacetic acid and epidermal growth factor using the nano-controlled release system (나노방출제어시스템을 이용하여 trichloroacetic acid와 epidermal growth factor의 순차적 방출을 적용한 인간치은섬유아세포의 세포생존 관련 유전자 연구분석)

  • Cho, Joon Youn;Lee, Richard sungbok;Lee, Suk Won
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.36 no.3
    • /
    • pp.145-157
    • /
    • 2020
  • Purpose: This study was to determine the possible effects of trichloroacetic acid (TCA) and epidermal growth factor (EGF) through cell survival genes of the PI3K-AKT signaling pathway when applying an hydrophobically modified glycol chitosan (HGC)-based nanocontrolled release system to human gingival fibroblasts in oral soft tissue regeneration. Materials and Methods: An HGC-based nano-controlled release system was produced, followed by the loading of TCA and EGF. The group was divided into control (CON), TCA-loaded nano-controlled release system (EXP1), and the TCA- and EGF- individually loaded nano-controlled release system (EXP2). A total for 29 genes related to the PI3K-AKT signaling pathway were analyzed after 48h of culture in human gingival fibroblasts. Real-time PCR, 1- way ANOVA and multiple regression analysis were performed. Results: Cell survival genes were significantly upregulated in EXP1 and EXP2. From multiple regression analysis, ITGB1 was determined to be the most influential factor for AKT1 expression. Conclusion: The application of TCA and EGF through the HGC-based nano-controlled release system can up-regulate the cell survival pathway.

Effects of antibacterial mouth rinses on multiple oral biofilms model (구강세정제가 다중 구강 바이오필름 모델에 미치는 영향)

  • Soo-Kyung Jun;Young-Suk Choi
    • Journal of Korean society of Dental Hygiene
    • /
    • v.23 no.4
    • /
    • pp.209-218
    • /
    • 2023
  • Objectives: To confirm the antibacterial effects of each mouth rinse on multiple oral biofilms in vitro. Methods: The antibacterial effects of different mouth rinses were examined by ATP and counted colony forming units (CFU). Preformed oral biofilms on saliva coated hydroxyapatite (sHA) disks were treated with essential oil and saline; then, the multiple oral biofilms were observed by Scanning electron microscope (SEM). RNA sequencing analysis was performed on total RNA isolated from old biofilms of P. intermedia ATCC 49046. Results: In the CFU measured result compared to controls, preformed multiple oral biofilms were reduced from a low of 39.0% to 95.7% (p<0.05). The size of bacterial cells changed after treatment with the essential oil, and some of the cells ruptured into small pieces of cell debris. Gene expression in P. intermedia ATCC 49046 significantly altered in RNA transcribed and protein translated genes after exposure to essential oil. Conclusions: Mouth rinse solutions with different ingredients had different antibacterial effects and may alter surface structure and gene expression as determined by RNA sequencing.

Biomimetics of Nano-pillar (나노섬모의 자연모사 기술)

  • Hur, Shin;Choi, Hong-Soo;Lee, Kyu-Hang;Kim, Wan-Doo
    • Elastomers and Composites
    • /
    • v.44 no.2
    • /
    • pp.98-105
    • /
    • 2009
  • The cochlea of the inner ear has two core components, basilar membrane and hair cells. The basilar membrane disperses incoming sound waves by their frequencies. The hair cells are on the basilar membrane, and they are the sensory receptors generating bioelectric signals. In this paper, a biomimetic technology using ZnO piezoelectric nano-pillar was studied as the part of developing process for artificial cochlea and novel artificial mechanosensory system mimicking human auditory senses. In particular, ZnO piezoelectric nano-pillar was fabricated by both low and high temperature growth methods. ZnO piezoelectric nano-pillars were grown on solid (high temperature growth) and flexible (low temperature growth) substrates. The substrates were patterned prior to ZnO nano-pillar growth so that we can selectively grow ZnO nano-pillar on the substrates. A multi-physical simulation was also conducted to understand the behavior of ZnO nano-pillar. The simulation results show electric potential, von Mises stress, and deformation in the ZnO nano-pillar. Both the experimental and computational works help characterize and optimize ZnO nano-pillar.

Effects of Multiple Stress Factors Including Iron Supply on Cell Growth and Lipid Accumulation in Marine Microalga Dunaliella tertiolecta (해양 미세조류 Dunaliella tertiolecta에서 철 공급을 포함한 다중스트레스 인자가 세포성장 및 지질생산에 미치는 영향)

  • Rizwan, Muhammad;Mujtaba, Ghulam;Lee, Kisay
    • Applied Chemistry for Engineering
    • /
    • v.28 no.3
    • /
    • pp.306-312
    • /
    • 2017
  • Changes in the cell growth and lipid accumulation of marine microalga Dunaliella tertiolecta were investigated in response to the combination of different stress factors including the variation of iron supply as a primary stress factor and different options in light irradiation and $CO_2$ supply as a secondary stress factor. High or limited Fe conditions could act as a stress for lipid synthesis. As a secondary stress factor, non-$CO_2$ condition was good for lipid accumulation, but the overall cell growth was sacrificed significantly after a long-time cultivation. Dark condition as a secondary stress factor also favored lipid accumulation and the extent of cell density reduction at the early period in the dark was small compared to other stress conditions. The two-stage cultivation strategy was necessary to maximize lipid production because tendencies of the cell growth and lipid content were not identical under the chosen stress condition. The first stage was for preparing a high cell density under the normal growth-favoring condition and the second stage was the stress condition to induce lipid accumulation in a short time. The short-term (12 h) incubation under the 5X Fe (3.25 mg/L) and dark conditions resulted in the best lipid productivity of 1.44 g/L/d providing 2 g/L inoculum at the second stage.

In Sitilico Protein Sequencing Based on Mass Spectrometry Using Multiple Pretenses (다중 효소를 이용한 질량분석기법에 기반한 단백질의 아미노산 서열 분석)

  • 문석현;이도헌;이광형
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.473-477
    • /
    • 2002
  • 세포내에서 특정 단백질이 합성되어 이용되는 것을 단백질의 발현이라 한다. 이러한 단백질의발현을 조사하는 작업은 세포내 대사과정을 밝혀내는 데 있어서 매우 중요한 역할을 담당하고 있다. 단백질의 발현을 조사하기 위해서는 세포로부터 추출하여 정제한 단백질이 어떤 단백질인지를 확인하는 작업이 필요한데 현재로써는 확인하고자 하는 단백질 효소로 분해하여 분해된 조각들의 질량을 측정하여 기존에 알려진 단백질들을 분해했을 때 이론상 나을 수 있는 조각들의 무게와 비교하여 가장 근접한 단백질을 찾아내는 질량분석기법(mass Spectrometry)이 널리 사용된다. 그러나 이 방법은 확인하고자 하는 단백질의 아미노산 서열이 알려져 있을 경우에만 사용할 수 있다는 한계점을 가지고 있다. 본 논문에서는 이러한 한계를 계산적인 방법으로 극복하고자 동일단백질을 여러가지 효소로 분해하여 나오는 조각들의 질량을 측정하고 이들을 조합하여 원래 단백질의 아미노산 서열을 알아낼 수 있는 알고리즘을 제안한다.

Bioelectrical Impedance Analysis of Multi-frequency using Portable Small Impedance Measuring System (휴대용 소형임피던스 측정시스템을 이용한 다중주파수의 생체임피던스 해석)

  • Kim, Min Soo;Cho, Young Chang
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.2
    • /
    • pp.121-126
    • /
    • 2017
  • In this study, we measured the bioelectrical impedance of whole body in various frequency bands by non-invasive method by four electrode method using a portable small impedance measurement system developed to understand the bioimpedance characteristics of intracellular fluid and extracellular fluid components through a skin equivalent model. The measurements were performed on 10 male subjects (mean age $24{\pm}3.0$, body mass index(BMI) $20.3kg/m^2$) for four weeks and the bioimpedances were measured at multi-frequencies (1 kHz, 5 kHz, 50 kHz, 70 kHz, 100 kHz and 500 kHz). Experimental results show that the impedance is the highest in the low frequency range of 1 kHz and the lowest in the high frequency range of 500 MHz. Especially, it was confirmed through experiments that the impedance is rapidly lowered above 50 kHz band. In addition, it was confirmed that similar characteristics to the measured values of the bioimpedance measuring system were obtained in the simulations for understanding the impedance characteristics of the intracellular fluid and the extracellular fluid through the skin equivalent circuit model.

Implementation and Performance Analysis of Real-time Multi-source Sensor Data Management System Based on Wireless Sensor Network (무선 센서네트워크 기반 실시간 다중소스 센서데이터 관리시스템 구현 및 성능분석)

  • Kang, Moon-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.8B
    • /
    • pp.1003-1011
    • /
    • 2011
  • In this paper, a real-time multi-source sensor data management system based on wireless sensor network is proposed and implemented. The proposed management system is designed to transmit the wireless data to the server in order to monitor and control the multi-source target's status efficiently by analyzing them. The proposed system is implemented to make it possible to control and transmit the wireless sensor data by classifying them, of which data are issued from the clustered sources composed of a number of the remote multiple sensors. In order to evaluate the performance of the proposed system, we measure and analyze both the transmission delay time according to the distance and the data loss rate issued from multiple data sources. From these results, it is verified that the proposed system has a good performance.

Isolation and Characterization of mas1+ of Schizosaccharomyces pombe, a Homologue of Human CIP29/Hcc-1 Involved in the Regulation of Cell Division (세포분열에 관여하는 인간의 CIP29/Hcc1 유전자와 상동성을 가지는 분열형 효모의 새로운 유전자 mas1+의 특성분석)

  • Cha, Jae-Young;Shin, Sang-Min;Ha, Se-Eun;Lee, Jung-Sup;Park, Jong-Kun
    • Journal of Life Science
    • /
    • v.21 no.12
    • /
    • pp.1666-1677
    • /
    • 2011
  • The regulation of gene expression plays an important role in cell cycle controls. In this study, a novel gene, the $mas1^+$($\underline{mi}$tosis $\underline{as}$sociated protein) gene, a homolog of human CIP29/Hcc1, was isolated and characterized from fission yeast Schizosaccharomyces pombe (S. pombe) using a gene-specific polymerase chain reaction. The isolated gene contained a complete open reading frame capable of encoding 245 amino acid residues with a typical promoter, as judged by nucleotide sequence analysis. It was also found that a PCB ($\underline{p}$ombe cell $\underline{c}$ycle $\underline{b}$ox) is located in the promoter region, which controls M-$G_1$ specific transcription in S. pombe. The quantitative analysis of the $mas1^+$ transcript against $adh1^+$ showed that the pattern of expression is similar to that of the septation index. Cytokinesis of mas1 mutant was greatly delayed at $25^{\circ}C$ and $36^{\circ}C$, and a large number of multi-septate cells were produced. The mas1 mutant had 2C, 4C and 6C DNA contents, as determined by FACS analysis. In addition, the number of multi-septate cells significantly increased. When cells were cultured in nitrogen starvation medium to increase proliferation, the abnormal phenotypes of mas1 mutant dramatically increased. These phenotypes could be rescued by an overexpression of the $mas1^+$ gene. The mas1 protein localized in the nuclei of S. pombe and human HeLa cells, as evidenced by Mas1-EGFP signals. The abnormal growth pattern and the morphology of mas1 mutant were complemented by a plasmid carrying human CIP29/Hcc-1cDNA. In addition, CIP29 /Hcc-1 transcript level increased in active cell proliferation stages in the developing mouse embryos. These results indicate that the $mas1^+$ ishomologous to the human CIP29/Hcc1 gene and is involved in cytokinesis and cell shape control.

Iterative Generalized Hough Transform using Multiresolution Search (다중해상도 탐색을 이용한 반복 일반화 허프 변환)

  • ;W. Nick Street
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.10
    • /
    • pp.973-982
    • /
    • 2003
  • This paper presents an efficient method for automatically detecting objects in a given image. The GHT is a robust template matching algorithm for automatic object detection in order to find objects of various shapes. Many different templates are applied by the GHT in order to find objects of various shapes and size. Every boundary detected by the GHT scan be used as an initial outline for more precise contour-finding techniques. The main weakness of the GHT is the excessive time and memory requirements. In order to overcome this drawback, the proposed algorithm uses a multiresolution search by scaling down the original image to half-sized and quarter-sized images. Using the information from the first iterative GHT on a quarter-sized image, the range of nuclear sizes is determined to limit the parameter space of the half-sized image. After the second iterative GHT on the half-sized image, nuclei are detected by the fine search and segmented with edge information which helps determine the exact boundary. The experimental results show that this method gives reduction in computation time and memory usage without loss of accuracy.

Identification of the spk Gene Encoding Sphingosine Kinase in Sphingomonas chungbukensis DJ77 and Its Expression in Escherichia coli (Sphingomonas chungbukensis DJ77에서 Sphingosine Kinase를 암호화하는 spk 유전자의 동정과 대장균에서의 발현)

  • Lee Su-Ri;Um Hyun-Ju;Kim Young-Chang
    • Korean Journal of Microbiology
    • /
    • v.41 no.2
    • /
    • pp.93-98
    • /
    • 2005
  • The sphingosine kinase gene, which is 969-nucleotide long, was identified during the whole genome sequencing of Sphingomonas chungbukensis DJ77. The amino acid sequence showed the identity of $55\%$ with that of Zymomonas mobilis subsp. mobilis ZM4. C2, C3, and C5 domains of eukaryotic sphingosine kinase were found in sphingosine kinase from Sphingomonas chungbukensis DI77. One of these three conserved sites, GGDG, was predicted as a ATP-binding site, and the functions of the others were unknown currently. The phylogenetic tree constructed by ClustalX indicated that the sphingosine kinase of S. chungbukensis DJ77 was near the phylogenetic group COG1597, and did not belong to the group of diacylglycerol kinase of the same strain. The recombinant sphingosine kinase was expressed in Escherichia coli, but it was made in form of inclusion body.