• Title/Summary/Keyword: 다중분류

Search Result 1,133, Processing Time 0.034 seconds

Classification of Negative Emotions based on Arousal Score and Physiological Signals using Neural Network (신경망을 이용한 다중 심리-생체 정보 기반의 부정 감성 분류)

  • Kim, Ahyoung;Jang, Eun-Hye;Sohn, Jin-Hun
    • Science of Emotion and Sensibility
    • /
    • v.21 no.1
    • /
    • pp.177-186
    • /
    • 2018
  • The mechanism of emotion is complex and influenced by a variety of factors, so that it is crucial to analyze emotion in broad and diversified perspectives. In this study, we classified neutral and negative emotions(sadness, fear, surprise) using arousal evaluation, which is one of the psychological evaluation scales, as well as physiological signals. We have not only revealed the difference between physiological signals coupled to the emotions, but also assessed how accurate these emotions can be classified by our emotional recognizer based on neural network algorithm. A total of 146 participants(mean age $20.1{\pm}4.0$, male 41%) were emotionally stimulated while their physiological signals of the electrocardiogram, blood flow, and dermal activity were recorded. In addition, the participants evaluated their psychological states on the emotional rating scale in response to the emotional stimuli. Heart rate(HR), standard deviation(SDNN), blood flow(BVP), pulse wave transmission time(PTT), skin conduction level(SCL) and skin conduction response(SCR) were calculated before and after the emotional stimulation. As a result, the difference between physiological responses was verified corresponding to the emotions, and the highest emotion classification performance of 86.9% was obtained using the combined analysis of arousal and physiological features. This study suggests that negative emotion can be categorized by psychological and physiological evaluation along with the application of machine learning algorithm, which can contribute to the science and technology of detecting human emotion.

Structural Design of Radial Basis Function-based Polynomial Neural Networks by Using Multiobjective Particle Swarm Optimization (다중목적 입자군집 최적화 알고리즘을 이용한 방사형 기저 함수 기반 다항식 신경회로망 구조 설계)

  • Kim, Wook-Dong;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1966-1967
    • /
    • 2011
  • 본 연구에서는 방사형 기저 함수를 이용한 다항식 신경회로망(Polynomial Neural Network) 분류기를 제안한다. 제안된 모델은 PNN을 기본 구조로 하여 1층의 다항식 노드 대신에 다중 출력 형태의 방사형 기저 함수를 사용하여 각 노드가 방사형 기저 함수 신경회로망(RBFNN)을 형성한다. RBFNN의 은닉층에는 fuzzy 클러스터링을 사용하여 입력 데이터의 특성을 고려한 적합도를 사용하였다. 제안된 분류기는 입력변수의 수와 다항식 차수가 모델의 성능을 결정함으로 최적화가 필요하며 본 논문에서는 Multiobjective Particle Swarm Optimization(MoPSO)을 사용하여 모델의 성능뿐만 아니라 모델의 복잡성 및 해석력을 고려하였다. 패턴 분류기로써의 제안된 모델을 평가하기 위해 Iris 데이터를 이용하였다.

  • PDF

Model-based Ozone Forecasting System using Fuzzy Clustering and Decision tree (퍼지 클러스터링과 결정 트리를 이용한 모델기반 오존 예보 시스템)

  • 천성표;이미희;이상혁;김성신
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.458-461
    • /
    • 2004
  • 오존 반응 메카니즘은 상당히 복잡하고 비선형적이기 때문에 오존 농도를 예측하는 것은 상당한 어려움을 안고 있다 따라서, 신뢰성 높은 오존 예측값을 구하는데 단일 예측모델만으로는 한계가 있으며, 이를 개선하기 위하여 다중 모델을 제안하였다. 입력데이터에 퍼지 클러스터링을 사용하여 고, 중, 저농도별로 그룹핑한 후, 그룹핑된 오존농도에 대해서 의사결정 트리를 사용하여 그룹핑된 오존데이터가 어느 정도 분류능력을 갖는지 파악하여, 오차가 가장 적은 분류특성을 갖는 그룹을 설정하여, 다중모델의 입력 데이터로 사용하여 모델을 형성하였다. 의사결정 트리를 이용하여 모델의 입력 데이터를 설정하는 것은 어떤 오존농도까지의 범위를 클래스로 설정하느냐에 따라서 모델의 성능과 고, 중, 저농도의 오존을 분류하는 성능이 달라지므로 본 논문에서는 퍼지 클러스터링을 이용하여 의사결정 트리의 클래스의 범위를 설정하여 예측 시스템을 구현하였다.

  • PDF

Feature Based Object-Oriented Thesaurus Construction (특성 기반 객체지향 시소러스 구축)

  • Jung, Dae-Sung;Han, Jung-Soo;Kim, Gui-Jung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2003.11c
    • /
    • pp.1579-1582
    • /
    • 2003
  • 본 연구는 컴포넌트 검색을 위해서 컴포넌트를 컨덱스트에 의해 패싯 분류하고, 컨텍스트와 특성들간의 관련값에 대한 통계적 분석에 의해 시소러스를 구축하여 다중 패싯 분류된 컴포넌트를 효율적으로 검색할 수 있는 방법을 제안하였다. 소스 코드로부터 추출된 특성은 카이제곱 방법을 통하여 간소화가 이루어지며, E-SARM 방법을 사용하여 컨텍스트의 자동 검색이 이루어질 수 있도록 하였다. 쿼리에 대해 자동 검색된 컨덱스트에 의해 후보 컴포넌트가 선정되고, 쿼리와 컴포넌트 간의 유사도가 계산됨으로써 컴포넌트가 검색될 수 있도록 하였다. 본 연구는 다중 패싯 분류된 컴포넌트의 검색에 효율적이며, 컴포넌트의 재사용성을 높일 수 있도록 하였다.

  • PDF

Implementation of Reusable Class Library based on CORBA using Genetic Algorithm (유전자 알고리즘을 이용한 CORBA 기반의 재사용 클래스 라이브러리 구현)

  • Lee, Byeong-Jeong;Mun, Byeong-Ro;U, Chi-Su
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.5 no.2
    • /
    • pp.209-222
    • /
    • 1999
  • 개발 과정의 생산성과 프로그램의 신뢰성을 향상시키기 위하여 소프트웨어 재사용이 매우 중요하며 , 효과적인 재사용을 위해서 세밀한 분류 방법과 정확한 검색 방법에 기반한 객체 지향 재사용 라이브러리가 필수적이다. 본 연구에서는 재사용 라이브러리의 다중 클러스터링(multi-way clustering) 분류 방법과 클러스터 기반 선형 검색(cluster-based linear retrieval) 방법에 유전자 알고리즘(genetic algorithm)을 적용한다. 다중 클러스터링은 부품들이 할당된 클러스터 개수, 클러스터 내부 유사도 그리고 클러스터들 사이의 유사도를 최적화하는 클러스터링을 찾아 부품을 세밀히 분류하는 것이고, 클러스터 기반 선형 검색은 주어진 질의와 유사한 부품을 많이 포함하는 클러스터를 검색하는 것이다. 본 논문에서는 유전자 알고리즘이 시뮬레이티드 어닐링 알고리즘(simulated annealing algorithm) 보다 우수한 해를 찾는 것을 실험을 통하여 보이고, 또한 본 알고리즘을 이용한 CORBA 기반의 재사용 클래스 라이브러리(RCL)를 기술한다.

Feature Selection for Image Classification of Hyperion Data (Hyperion 영상의 분류를 위한 밴드 추출)

  • 한동엽;조영욱;김용일;이용웅
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.2
    • /
    • pp.170-179
    • /
    • 2003
  • In order to classify Land Use/Land Cover using multispectral images, we have to give consequence to defining proper classes and selecting training sample with higher class separability. The process of satellite hyperspectral image which has a lot of bands is difficult and time-consuming. Furthermore, classification result of hyperspectral image with noise is often worse than that of a multispectral image. When selecting training fields according to the signatures in the study area, it is difficult to calculate covariance matrix in some clusters with pixels less than the number of bands. Therefore in this paper we presented an overview of feature extraction methods for classification of Hyperion data and examined effectiveness of feature extraction through the accuracy assesment of classified image. Also we evaluated the classification accuracy of optimal meaningful features by class separation distance, which is also a method for band reduction. As a result, the classification accuracies of feature-extracted image and original image are similar regardless of classifiers. But the number of bands used and computing time were reduced. The classifiers such as MLC, SAM and ECHO were used.

Diagnosis of Valve Internal Leakage for Ship Piping System using Acoustic Emission Signal-based Machine Learning Approach (선박용 밸브의 내부 누설 진단을 위한 음향방출신호의 머신러닝 기법 적용 연구)

  • Lee, Jung-Hyung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.1
    • /
    • pp.184-192
    • /
    • 2022
  • Valve internal leakage is caused by damage to the internal parts of the valve, resulting in accidents and shutdowns of the piping system. This study investigated the possibility of a real-time leak detection method using the acoustic emission (AE) signal generated from the piping system during the internal leakage of a butterfly valve. Datasets of raw time-domain AE signals were collected and postprocessed for each operation mode of the valve in a systematic manner to develop a data-driven model for the detection and classification of internal leakage, by applying machine learning algorithms. The aim of this study was to determine whether it is possible to treat leak detection as a classification problem by applying two classification algorithms: support vector machine (SVM) and convolutional neural network (CNN). The results showed different performances for the algorithms and datasets used. The SVM-based binary classification models, based on feature extraction of data, achieved an overall accuracy of 83% to 90%, while in the case of a multiple classification model, the accuracy was reduced to 66%. By contrast, the CNN-based classification model achieved an accuracy of 99.85%, which is superior to those of any other models based on the SVM algorithm. The results revealed that the SVM classification model requires effective feature extraction of the AE signals to improve the accuracy of multi-class classification. Moreover, the CNN-based classification can be a promising approach to detect both leakage and valve opening as long as the performance of the processor does not degrade.

Survey on Cache Coherency Schemes for Large Scale Multiprocessor Systems (대규모 다중프로세서 시스템의 캐시 동일성 유지 기법 조사)

  • Ki, A.D.;Hahn, W.J.;Yoon, S.H.
    • Electronics and Telecommunications Trends
    • /
    • v.9 no.3
    • /
    • pp.69-96
    • /
    • 1994
  • 본고에서는 캐시 동일성 유지 기법들을 분류하여 그 특성들을 개략적으로 살펴본 후 대규모 다중프로세서를 위해 제안된 것 중 몇몇 특색있는 것들을 살펴본다.

Semi-Markov 모형에 기초한 다중상태 생존자료의 준모수적 분석

  • 여성칠
    • Communications for Statistical Applications and Methods
    • /
    • v.5 no.3
    • /
    • pp.777-792
    • /
    • 1998
  • 병원의 임상연구실험에서 종종 환자들의 치료에 따른 병세의 호전상태를 여러단계로 분류하여 상이한 치료방법에 대한 치료효과간의 차이론 알고자 하는 경우가 있다. 이와 같이 다중상태의 생존자료를 분석하기 위해서 본 논문에서는 semi-Markov 모형에 Cox 회귀모형을 적용하여 회귀계수와 기저생존함수를 추정하고 이를 바탕으로 반응확률함수를 추정하였다. 그리고 본 논문의 결과를 실제 임상실험에서 얻어진 자료에 적용하여 분석하였다.

  • PDF

A GRNN classifier using random generator and application to classifying promoters (난수발생기를 이용한 일반화된 회귀신경망 분류기와 프로모터 분류에의 응용)

  • Kim, Kun-Ho;Kim, Byung-Whan;Kim, Kyung-Nam;Hong, Jin-Han
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2552-2554
    • /
    • 2003
  • 난수발생기 (Random generator-RG)와 GRNN을 이용한 분류기 설계방식을 제안하며, 이를 프로모터 염기서열의 분류에 적용한다. 주어진 난수범위에서 다중 분류기를 발생하였으며, 그 성능을 예측정확도와 분류민감도 측면에서 평가하였고, 분류민감도는 다시 전체와 개별적 프로모터에 대해서 세분화하여 평가하였다. 최적화된 분류기 상호간의 비교에서 제안된 기법은 모든 임계점에 대해서, 전체 분류민감도와 전체 예측정확도를 향상시키었으며, 이는 전체 분류 민감도에서 더 두드러졌다. 한편, 개별적 프로모터에 대한 분류민감도와 예측정확도도 평균적으로 향상되었다. 이 같은 결과로 제안된 기법이 분류와 예측성능을 동시에 증진하는데 매우 효과적임을 알 수 있었다.

  • PDF