• Title/Summary/Keyword: 다중분류

Search Result 1,133, Processing Time 0.031 seconds

Cancer Diagnosis System using Genetic Algorithm and Multi-boosting Classifier (Genetic Algorithm과 다중부스팅 Classifier를 이용한 암진단 시스템)

  • Ohn, Syng-Yup;Chi, Seung-Do
    • Journal of the Korea Society for Simulation
    • /
    • v.20 no.2
    • /
    • pp.77-85
    • /
    • 2011
  • It is believed that the anomalies or diseases of human organs are identified by the analysis of the patterns. This paper proposes a new classification technique for the identification of cancer disease using the proteome patterns obtained from two-dimensional polyacrylamide gel electrophoresis(2-D PAGE). In the new classification method, three different classification methods such as support vector machine(SVM), multi-layer perceptron(MLP) and k-nearest neighbor(k-NN) are extended by multi-boosting method in an array of subclassifiers and the results of each subclassifier are merged by ensemble method. Genetic algorithm was applied to obtain optimal feature set in each subclassifier. We applied our method to empirical data set from cancer research and the method showed the better accuracy and more stable performance than single classifier.

Multiple Feature Representation for Efficient Cascaded Face Detection (효과적인 계단식 얼굴 검출을 위한 다중 특징 추출)

  • 소형준;남미영;이필규
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10b
    • /
    • pp.742-744
    • /
    • 2004
  • 본 논문은 복잡한 배경에서의 얼굴 검출에 있어서 다중 특징 추출 데이터로 학습한 계단식 분류기에 의한 방법을 제안한다 얼굴 검출에서 얼굴의 패턴은 상당히 다양한 영상 표현으로 나타나기 때문에 하나의 특징 추출 방법은 사람의 얼굴을 모델링 하기에는 부족하다. 따라서 여기서는 얼굴의 전체적인 지역적인 특징을 나타내는 Subregion과, 얼굴의 주파수 특성에 따라 좀 더 세밀하고 다양한 속성들을 나타내는 Haar 웨이블릿 변환을 이용하여 다중으로 특징을 추출하여 효과적인 모델링을 시도하였다. 특징을 추출한 얼굴과 비얼굴의 패턴(pattern)을 구분하기 위해서 패턴들의 통계적인 특성을 이용하여 각 추출방법에 맞게 학습된 Bayesian 분류기를 직렬로 연결하여 사용하였으며 비얼굴은 얼굴과 유사한 비얼굴(face-like nonface) 패턴들을 사용하여 모델링 하였다. 제안한 얼굴 검출 방식의 성능은 MIT-CMU 시험 영상들을 이용하여 평가하였다. 그 결과 한 가지 특징 추출을 사용하는 것 보다 두 가지 특징 추출을 병행한 계단식 구성이 더 정확한 검출 결과를 나타내었다.

  • PDF

A Multi-Resolution Distance Measure Using Proposed Grey Block Distance Algorithms for Principal Component Analysis and Kurtosis (주성분분석과 첨도에서의 제안된 GBD 알고리즘을 이용한 다중해상도 거리 측정)

  • Hong, Jun-Sik
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2003.11a
    • /
    • pp.571-574
    • /
    • 2003
  • 본 논문에서는 다중해상도에서 기존의 그레이 블록 거리(grey biock distance; GBD, 이하 GBD)알고리즘과 비교하여 이차원 영상간의 상대적 식별을 더 용이하게 하기 위한 새로운 GBD 알고리즘 방법을 제안한다. 이 제시된 방법은 다중해상도에서 기존의 GBD 알고리즘과 비교해서 영상이 급격히 변화하는 부분의 정보를 잃지 않게 개선할 수 있었다. 모의 실험 예로서 주성분분석(principal component analysis; 이하 PCA) 기법을 적용하여 유용성과 제안된 방법이 이전의 연구보다 k가 감소할 때 편차는 줄어들어 좋은 영상 분류 특징을 보였으며, 첨도(Kurtosis)에서의 영상간의 거리 측정 결과 첨도가 가지고 있는 특성에 의해 영상 분류 시 매우 민감한 반응을 나타내어 k가 4까지만 블록을 분할 할 수 있음을 모의 실험을 통하여 확인할 수 있었다.

  • PDF

A Study on Facial Skin Disease Recognition Using Multi-Label Classification (다중 레이블 분류를 활용한 안면 피부 질환 인식에 관한 연구)

  • Lim, Chae Hyun;Son, Min Ji;Kim, Myung Ho
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.12
    • /
    • pp.555-560
    • /
    • 2021
  • Recently, as people's interest in facial skin beauty has increased, research on skin disease recognition for facial skin beauty is being conducted by using deep learning. These studies recognized a variety of skin diseases, including acne. Existing studies can recognize only the single skin diseases, but skin diseases that occur on the face can enact in a more diverse and complex manner. Therefore, in this paper, complex skin diseases such as acne, blackheads, freckles, age spots, normal skin, and whiteheads are identified using the Inception-ResNet V2 deep learning mode with multi-label classification. The accuracy was 98.8%, hamming loss was 0.003, and precision, recall, F1-Score achieved 96.6% or more for each single class.

Ground Target Classification Algorithm based on Multi-Sensor Images (다중센서 영상 기반의 지상 표적 분류 알고리즘)

  • Lee, Eun-Young;Gu, Eun-Hye;Lee, Hee-Yul;Cho, Woong-Ho;Park, Kil-Houm
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.2
    • /
    • pp.195-203
    • /
    • 2012
  • This paper proposes ground target classification algorithm based on decision fusion and feature extraction method using multi-sensor images. The decisions obtained from the individual classifiers are fused by applying a weighted voting method to improve target recognition rate. For classifying the targets belong to the individual sensors images, features robust to scale and rotation are extracted using the difference of brightness of CM images obtained from CCD image and the boundary similarity and the width ratio between the vehicle body and turret of target in FLIR image. Finally, we verity the performance of proposed ground target classification algorithm and feature extraction method by the experimentation.

(Fault Detection and Isolation of the Nonlinear systems Using Neural Network-Based Multi-Fault Models) (신경회로망기반 다중고장모델에 의한 비선형시스템의 고장감지와 분류)

  • Lee, In-Su
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.1
    • /
    • pp.42-50
    • /
    • 2002
  • In this paper, we propose an FDI(fault detection and isolation) method using neural network-based multi-fault models to detect and isolate faults in nonlinear systems. When a change in the system occurs, the errors between the system output and the neural network nominal system output cross a threshold, and once a fault in the system is detected, the fault classifier statistically isolates the fault by using the error between each neural network-based fault model output and the system output. From the computer simulation results, it is verified that the proposed fault diagonal method can be performed successfully to detect and isolate faults in a nonlinear system.

A Study of Efficient Rock Mass Rating for Tunnel Using Multivariate Analysis (다변량분석을 이용한 터널에서의 효율적인 암반분류에 관한 연구)

  • Wye, Yong-Gon;No, Sang-Lim;Yoon, Ji-Son
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.2 no.2
    • /
    • pp.41-49
    • /
    • 2000
  • Rock Mass Rating has been widely applied to the underground tunnel excavation and many other practical problems in rock engineering. However, Rock Mass Rating is hard, even by the experts of tunnel assessment owing to lack of investigation system. In this study, using multivariate analysis we presented rock mass rating system that is objective and easy to use. The constituents of RMR are decided to RQD, condition of discontinuities, groundwater conditions, intact rock strength, orientation of discontinuities, spacing of discontinuities in important order. In each step, we proposed the best multiple regression model for RMR system.

  • PDF

A system for automatically generating activity photos of infants based on facial recognition in a multi-camera environment (다중 카메라 환경에서의 안면인식 기반의 영유아 활동 사진 자동 생성 시스템)

  • Jung-seok Lee;Kyu-ho Lee;Kun-hee Kim;Chang-hun Choi;Kyoung-ro Park;Ho-joun Son;Hongseok Yoo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.481-483
    • /
    • 2023
  • 본 논문에서는 다중 카메라환경에서의 안면인식 기반 영유아 활동 사진 자동 생성 시스템을 개발했다. 개발한 시스템은 어린이집에서 알림장 작성을 위한 촬영하는 동안 보육에 부주의하여 안전사고가 발생하는 것을 방지 할 수 있다. 시스템은 이동식 수집기와 분류 서버로 나뉘어 작동하게 된다. 이동식 수집기는 Raspberry Pi를 이용하였고 초당 1장 내외의 사진을 촬영하여 SAMBA를 사용 공유폴더에 저장한다. 분류 서버에서는 YOLOv5를 사용해 안면을 인식해 분류한다. OpenCV와 TensorFlow-Keras를 통해 분류된 사진에서의 표정을 파악하여 부모에게 전송할 웃는사진만을 분류하여 남겨둔다. 이외의 사진은 /dev/null로 이동하여 삭제된다.

  • PDF

Ensemble Model using Multiple Profiles for Analytical Classification of Threat Intelligence (보안 인텔리전트 유형 분류를 위한 다중 프로파일링 앙상블 모델)

  • Kim, Young Soo
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.3
    • /
    • pp.231-237
    • /
    • 2017
  • Threat intelligences collected from cyber incident sharing system and security events collected from Security Information & Event Management system are analyzed and coped with expanding malicious code rapidly with the advent of big data. Analytical classification of the threat intelligence in cyber incidents requires various features of cyber observable. Therefore it is necessary to improve classification accuracy of the similarity by using multi-profile which is classified as the same features of cyber observables. We propose a multi-profile ensemble model performed similarity analysis on cyber incident of threat intelligence based on both attack types and cyber observables that can enhance the accuracy of the classification. We see a potential improvement of the cyber incident analysis system, which enhance the accuracy of the classification. Implementation of our suggested technique in a computer network offers the ability to classify and detect similar cyber incident of those not detected by other mechanisms.

Detection and Classification of Open-phase Faults in PMSM Using Extended Kalman Filter and Multiple Model (확장칼만필터 및 다중모델 기반 영구자석 동기전동기 권선 개방 고장의 검출 및 분류)

  • Minwoo Kim;Junhyeong Park;Sangho Ko
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.6
    • /
    • pp.100-107
    • /
    • 2023
  • Open-phase fault in a Permanent Magnet Synchronous Motor (PMSM) occurs due to disconnection of phases of motor windings or inverter switch failures. When an open-phase occurs, it leads to the generation of torque ripples and vibrations in the motor, which can have a critical impact on the safety of the vehicle (including aircraft) using a PMSM as an actuator. Therefore, rapid fault detection and classification are essential. This paper proposes a classification method for detecting open-phase faults and locating fault positions in a PMSM used in aircraft applications. The proposed approach uses an Extended Kalman Filter for fault diagnosis, and it subsequently classifies faults using a Multiple Model filter.