• 제목/요약/키워드: 다중분류

검색결과 1,133건 처리시간 0.031초

의도 정보를 활용한 다중 레이블 오픈 의도 분류 (Multi-label Open Intent Classification using Known Intent Information)

  • 박나현;조성민;송현제
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.479-484
    • /
    • 2023
  • 다중 레이블 오픈 의도 분류란 다중 의도 분류와 오픈 의도 분류가 합쳐져 오픈 도메인을 가정하고 진행하는 다중 의도 분류 문제이다. 발화 속에는 여러 의도들이 존재한다. 이때 사전에 정의된 의도 여부만을 판별하는 것이 아니라 사전에 정의되어 있는 의도에 대해서만이라도 어떤 의도인지 분류할 수 있어야 한다. 본 논문에서는 발화 속 의도 정보를 활용하여 다중 레이블 오픈 의도를 분류하는 모델을 제안한다. 먼저, 문장의 의도 개수를 예측한다. 그리고 다중 레이블 의도 분류기를 통해 다중 레이블 의도 분류를 진행하여 의도 정보를 획득한다. 획득한 의도 정보 속 다중 의도 개수와 전체 의도 개수를 비교하여 전체 의도 개수가 더 많다면 오픈 의도가 존재한다고 판단한다. 실험 결과 제안한 방법은 MixATIS의 75% 의도에서 정확도 94.49, F1 97.44, MixSNIPS에서는 정확도 86.92, F1 92.96의 성능을 보여준다.

  • PDF

다중 레이블 나이브 베이지안 분류기의 정확도 개선 연구 (Improving Accuracy of Multi-label Naive Bayes Classifier)

  • 김해천;이재성
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2018년도 제57차 동계학술대회논문집 26권1호
    • /
    • pp.147-148
    • /
    • 2018
  • 다중 레이블 분류 문제는 다중 레이블 데이터를 입력받았을 때 연관된 다수의 레이블을 추측하는 문제이다. 본 논문에서는 다중 레이블 분류 문제의 기법 중 하나인 나이브 베이지안 분류기에 레이블 의존성을 계산하여 결과에 반영한 결과 다중 레이블 분류 문제의 성능이 개선됨을 확인하였다.

  • PDF

다중 분류기 시스템을 이용한 자동 문서 분류 (Automatic Document Classification Using Multiple Classifier Systems)

  • 김인철
    • 정보처리학회논문지B
    • /
    • 제11B권5호
    • /
    • pp.545-554
    • /
    • 2004
  • 단일 분류기에 비해 높은 분류성능을 얻기 위해 다수의 분류기들을 결합하여 사용하는 방법은 폭넓게 이용되어 온 기술이다. 하나의 다중 분류기 시스템을 구성하는 일은 다음 두 가지 문제들을 가지고 있다. 첫째는 어떻게 기반 분류기들을 생성하느냐 하는 것이고 둘째는 이들의 예측결과를 어떻게 결합하느냐 하는 것이다. 본 논문에서는 Bagging, Boosting, Stacking 등 기존의 대표적인 다중 분류기 시스템들의 특징을 살펴보고, 문서 분류를 위한 새로운 다중 분류기 시스템들인 Stacked Bagging, Stacked Boosting, Bagged Stacking, Boosted Stacking들을 제안한다. 이들은 Bagging, Boosting, Stacking과 같은 기존 다중 분류기 시스템들의 장점들을 결합한 일종의 혼합형 다중 분류기 시스템들이다. 본 논문에서는 제안된 다중 분류기 시스템들의 성능을 평가하기 위해 MEDLINE, 유즈넷 뉴스, 웹 문서 등의 문서집합을 이용한 문서 분류 실험들을 전개하였다. 그리고 이러한 실험결과를 통해 제안한 혼합형 다중 분류기 시스템들은 전반적으로 기존 시스템들보다 우수한 성능을 보이는 것으로 나타났다.

하이브리드 다중 분류기시스템 (Hybrid Multiple Classifier Systems)

  • 김인철
    • 지능정보연구
    • /
    • 제10권2호
    • /
    • pp.133-145
    • /
    • 2004
  • 단일 분류기보다 우수한 성능을 얻기 위해 다수의 분류기들을 결합하는 방법은 폭 넓게 이용되어 오고 있는 기술이다. 하나의 다중 분류기 시스템(MCS)를 구축하는 일은 두 가지 해결해야 할 문제들을 가지고 있다. 하나는 다양한 기반-레벨의 분류기들을 어떤 방법으로 생성하느냐 하는 것이고, 다른 하나는 이들의 예측을 어떤 방법으로 결합하느냐 하는 것이다. 본 논문에서는 기존의 다중 분류기 시스템들인 bagging, boosting, 그리고 staking의 특징들을 살펴본 다음, 새로운 다중 분류기 시스템들인 stacked boosting, boosting, bagged stacking, 그리고 boosted stacking들을 제안한다. 이들은 기존의 다중 분류기 시스템들의 장점들을 결합한 일종의 하이브리드 다중 분류기 시스템들이다. 새로 제안한 다중 분류기 시스템들의 성능을 평가하기 위해, 본 논문에서는 UCI KDD 데이터 아카이브에서 제공되는 서로 다른 9가지의 실세계 데이터 집합들을 이용하여 실험들을 전개하였다. 실험 결과, 본 논문에서 제안한 하이브리드 다중 분류기 시스템들, 특히 bagged stacking과 boosted stacking이 기존의 다중 분류기 시스템들에 비해 우수한 성능을 보여 주었다.

  • PDF

유전 알고리즘 기반 귀납적 학습 환경에서 분류기의 통합 (Integrating Multiple Classifiers in a GA-based Inductive Learning Environment)

  • 김영준
    • 한국정보통신학회논문지
    • /
    • 제10권3호
    • /
    • pp.614-621
    • /
    • 2006
  • PROSPECTOR에서 사용한 규칙 형태의 분류 규칙을 습득하기 위한 유전 알고리즘 기반 귀납적 학습 환경에서 다중 분류기 학습법을 구현하였다. 다중 분류기 학습법은 주어진 사례 집합에 대해 다수의 분류기를 습득한 후 이를 이용하여 분류 시스템을 구축함으로써 시스템의 성능을 향상시키는 기법이다. 다중 분류기 학습법의 구현을 위해서는 분류기의 분류 결과를 취합하여 최종 결론을 도출해 내기 위한 기법이 필요하다. 본 논문에서는 각각의 클래스에 대해 분류기가 제공하는 사후 가능성을 취합하여 결론을 도출해 내는 기법과 순위에 기반을 둔 보우팅 기법을 소개하고 다중 분류기 학습법이 유전 알고리즘 기반 귀납적 학습 환경에 미치는 영향을 다수의 사례 집합을 이용하여 평가하였다.

포섭 구조기반 OVR SVM 결합을 통한 다중부류 암 분류 (Multi-class Cancer Classification by Integrating OVR SVMs based on Subsumption Architecture)

  • 홍진혁;조성배
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 한국컴퓨터종합학술대회 논문집 Vol.33 No.1 (A)
    • /
    • pp.37-39
    • /
    • 2006
  • 지지 벡터 기계(Support Vector Machine; SVM)는 기본적으로 이진분류를 위해 고안되었지만, 최근 다양한 분류기 생성전략과 결합전략이 고안되어 다중부류 분류에도 적용되고 있다. 본 논문에서는 OVR(One-Vs-Rest) 전략으로 생성된 SVM을 NB(Naive Bayes) 분류기를 이용하여 동적으로 구성함으로써, OVR SVM을 이용한 다중부류 분류 시스템에서 자주 발생하는 동점을 효과적으로 해결하는 방법은 제안한다. 이 방법을 유전발현 데이터를 이용한 다중부류 암 분류에 적용하였는데, 고차원의 데이터로부터 NB 분류기 구축에 유용한 유전자를 선택하기 위해 Pearson 상관계수를 사용하였다. 14개의 암 유형과 16,063개의 유전발현 수준을 가지는 대표적인 다중부류 암 분류 데이터인 GCM 암 데이터에 적용하여 제안하는 방법의 유용성을 확인하였다.

  • PDF

OVA SVM의 동적 결합을 이용한 효과적인 지문분류 (Effective Fingerprint Classification with Dynamic Integration of OVA SVMs)

  • 홍진혁;조성배
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 가을 학술발표논문집 Vol.32 No.2 (2)
    • /
    • pp.883-885
    • /
    • 2005
  • 지지 벡터 기계(Support Vector Machine: SVM)를 이용한 다중부류 분류기법이 최근 활발히 연구되고 있다. SVM은 이진분류기이기 때문에 다중부류 분류를 위해서 다수의 분류기를 구성하고 이들을 효과적으로 결합하는 방법이 필요하다. 본 논문에서는 기존의 정적인 다중분류기 결합 방법과는 달리 포섭구조의 분류모델을 확률에 따라 동적으로 구성하는 방법을 제안한다. 확률적 분류기인 나이브 베이즈 분류기(NB)를 이용하여 입력된 샘플의 각 클래스에 대한 확률을 계산하고, OVA (One-Vs-All) 전략으로 구축된 다중의 SVM을 획득된 확률에 따라 포섭구조로 구성한다. 제안하는 방법은 OVA SVM에서 발생하는 중의적인 상황을 효과적으로 처리하여 고성능의 분류를 수행한다. 본 논문에서는 지문분류 문제에서 대표적인 NIST-4 지문 데이터베이스를 대상으로 제안하는 방법을 적용하여 $1.8\%$의 거부율에서 $90.8\%$의 분류율을 획득하였으며, 기존의 결합 방법인 다수결 투표(Majority vote), 승자독식(Winner-takes-all), 행동지식공간 (Behavior knowledge space), 결정템플릿(Decision template) 등보다 높은 성능을 확인하였다.

  • PDF

근사적 클러스터링에 의한 다중 전극 활동 전위 분류 (Multi-electrode Spike Sorting by Approximate Clustering)

  • 안종훈
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2007년도 가을 학술발표논문집 Vol.34 No.2 (C)
    • /
    • pp.346-351
    • /
    • 2007
  • 다중 전극으로 측정한 활동 전위의 분류(Multi-electrode spike sorting)는 단일 전극(single-electrode)보다 더 정확한 결과를 보여준다. 그러나 다중 전극에서 주어지는 활동 전위 크기들의 클러스터는 일반적으로 분류하기 쉴지 않은 문제이다. 이 논문에서는 고전적인 클러스터링 알고리듬 중의 하나인 Mountain method를 수정하여 다중 전극 활동전위의 분류에 적합한 알고리듬을 제안한다. 통상적인 데이터 클러스터링이 아닌 공간 분할을 통해 신경 데이터의 다양한 클러스터에 대해서 적응도가 높아지고 빠른 분류를 하게 된다.

  • PDF

다중 언어에서 다중 활자체 및 다중 크기의 문자 인식을 위한 2계층 분류기 (A Two-Layer Classifier for Recognition of Multi-font and Multi-size Characters in Multi-lingual Documents)

  • 지수영;문경애;오원근;김태윤
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1996년도 제8회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.93-97
    • /
    • 1996
  • 본 논문에서는 2 계층 분류기를 이용하여 일반적인 문서(보고서, 책, 잡지, 워드프로세서에서 출력 된 양식) 내의 다중 크기 및 다중 활자체의 인식을 위한 효과적인 방법을 제안하고 구현하였다. 다중언어 문자를 효과적으로 인식하기 위한 2 계층 분류기를 제안하였는데 이는 폰트 독립적 분류기와 폰트 의존적 분류기로 구성되어 있다. 제안된 방법의 성능 평가를 위하여 사무실에서 많이 사용하는 59 종류의 폰트와 각 폰트 당 3가지 크기의 글꼴과, 스캐너에서 지원되는 3가지 농도의 총 489개의 서로 다른 부류를 갖는 3,593,172 자를 대상으로 학습시킨 뒤에 일반 문서를 가지고 펜티엄 PC 상에서 인식 실험을 수행하였다. 실험 결과, 2계층 분류기를 갖는 시스템에서 96-98%의 인식률과 초당40자 이상의 인식 속도를 보여줌으로써 일반적인 문서에서 다중 크기 및 다중 활자체의 문자 인식에 매우 실용적인 가치가 있음을 확인했다.

  • PDF

지지벡터기계를 이용한 다중 분류 문제의 학습과 성능 비교 (Learning and Performance Comparison of Multi-class Classification Problems based on Support Vector Machine)

  • 황두성
    • 한국멀티미디어학회논문지
    • /
    • 제11권7호
    • /
    • pp.1035-1042
    • /
    • 2008
  • 이진 분류기로서 지지벡터기계는 다양한 응용을 통해 이진 분류 문제에서 기존의 패턴 분류기들보다 우수한 성능을 보였다. 지지벡터기계의 바탕이 되는 최대 마진 분류 이론을 다중 분류 문제에 확장은 어려움이 있다. 이 논문에서는 다중 분류 문제를 위한 지지벡터기계의 학습 전략을 논의하였으며 성능 비교를 수행하였다. 학습 데이터의 분배 전략에 따라 지지벡터기계는 고유의 이진 분류 특징을 수정하지 않고 다중분류 문제에 쉴게 적용될 수 있다. 다양한 벤치마킹 데이터에 대해 선택된 학습 전략, 커널함수, 학습 소요시간 등에 따라 성능비교가 수행되었고 오류역전파 학습의 신경망의 테스트 결과와 비교되었다. 신경망 모델과 비교 실험에서 지지벡터기계는 일반적인 다중 분류 문제에 응용성과 효과가 있음을 보였다.

  • PDF