본 논문의 목적은 다중 생체 인식을 위하여 사용되는 다양한 정규화함수와 결합 및 패턴 분류 알고리즘들의 성능을 비교 평가하는 것이다. 이를 위하여 NIST에서 제공하는 유사도 집합인 BSSR(Biometric from Set-Releasel) 데이터베이스와 다양한 정규화함수, 결합 및 패턴 분류 알고리즘을 이용하여 실험을 수행하였으며, HTER(Half Total Error Rate)을 이용한 평가 결과를 제시하고 있다. 본 연구는 단일 데이터베이스와 평가 항목을 이용한 평가 결과를 제시함으로써 다중 생체 인식시스템의 성능 개선 연구를 위한 토대가 될 수 있다.
OFDM (Orthogonal Frequency Division Multiplexing) 전송방식의 장점은 높은 주파수 효율, RF간섭에 대한 강인성, 낮은 다중 경로 왜곡 등을 들 수 있다. 다중 사용자 OFDM의 채널용량을 확대하기 위해서는 사용자간의 부채널과 비트 할당의 효율적인 알고리즘을 개발하여야 한다. 본 연구에서는 다중 사용자의 전송요구량을 만족하는 최적 부채널 및 비트 할당 문제를 0-1 정수계획법 모형으로 형성하고, 원래 문제의 선형계획법 완화 (linear programming relaxation)문제를 dual-decomposition과 subgradient 알고리즘을 사용하여 해를 구하는 효과적인 알고리즘을 제시한다. 또한 dual-decomposition으로 구한 목적함수값은 원래 문제의 선형계획법 완화문제의 최적목적함수 간과 동일함을 증명하였다 모의실험을 통하여 다수의 문제에 대하여 원래 문제의 최적 목적항수값에 대한 dual-decomposition으로 구한 하한의 성능을 제시하였다. MQAM (M-ary Quadrature Amplitude Modulation)을 사용하고 3개의 독립적인 Rayleigh 다중 경로로 구성된 주파수 선택적 채널을 가정한 경우 MATLAB을 사용한 모의실험에서 0-1 정수계획 법으로 구한 최적해의 성능을 실험하였다.
An injection mold cooling circuit for an automotive front bumper was optimally designed in order to simultaneously minimize the average of the standard deviations of the temperature and the difference in mean temperatures of the upper and lower molds for uniform cooling. The temperature distribution for a specified design was evaluated by Moldflow Insight 2010, a commercial injection molding analysis tool. For efficient design, PIAnO (Process Integration, Automation and Optimization), a commercial PIDO tool, was used to integrate and automate injection molding analysis procedure. The weighted-sum method was used to handle the multi-objective optimization problem and PQRSM, a function-based sequential approximate optimizer equipped in PIAnO, to handle numerically noisy responses with respect to the variation of design variables. The optimal average of the standard deviations and difference in mean temperatures were found to be reduced by 9.2% and 56.52%, respectively, compared to the initial ones.
본 논문에서는, HCM 클러스러팅 방법과 유전자 알고리즘을 이용하여 다중 FNN 모델을 동정하고 최적화 한다. 제안된 다중 FNN은 Yamakawa의 FNN을 기본으로 하며, 퍼지 추론 방법으로 간략 추론을, 학습으로는 오류 역전파 알고리즘을 사용한다. 다중 FNN 모델의 구조와 파라미터를 동정하기 위해 HCM 클러스터링과 유전자 알고리즘을 사용한다. 여기서, 시스템 모델링을 위해 데이터 전처리 기능을 수행하는 HCM클러스터링 방법은 I/O 프로세서 공정 데이터를 이용하여 입출력 공간분할에 의한 다중 FNN 구조를 결정하기 위해 사용된다. 또한 유전자 알고리즘을 사용하여 멤버쉽함수의 정점, 학습율, 모멘텀 계수와 같은 다중 FNN 모델의 파라미터들을 동조한다. 모델의 근사화와 일반화 능력 사이에 합히적 균형을 얻기 위해 하중계수를 가진 합성 성능지수를 사용한다. 이 합성 성능지수는 근사화 및 예측 능력사이의 상호 균형과 의존성을 고려한 하중계수를 가진 합성 목적함수를 의미한다. 데이터 개수, 비선형성의 정도에 의존하는 이 합성 목적함수의 하중계수의 선택, 조절을 통하여 최적의 다중 FNN 모델을 설계하는 것이 유용하고 효과적임을 보인다. 제안된 모델의 성능 평가를 위하여 가스로 공정의 시계열 데이터와 비선형 함수의 수치 데이터를 사용한다.
The present paper deals with a multiobjective optimization method based on the co-evolutionary genetic strategy. The co-evolutionary strategy carries out the multiobjective optimization in such way that it optimizes individual objective function as compared with each generation's value while there are more than two genetic evolutions at the same time. In this study, the designs that are out of the given constraint map compared with other objective function value are excepted by the penalty. The proposed multiobjective genetic algorithms are distinguished from other optimization methods because it seeks for the optimized value through the simultaneous search without the help of the single-objective values which have to be obtained in advance of the multiobjective designs. The proposed strategy easily applied to well-developed genetic algorithms since it doesn't need any further formulation for the multiobjective optimization. The paper describes the co-evolutionary strategy and compares design results on the simple structural optimization problem.
토양수분은 토양에 포함된 평균 수분량을 나타내며 수문 순환 관점에서 매우 중요한 수문변량 중 하나이다. 본 연구에서는 대표적인 기계학습 방법인 Support Vector Machine (SVM)을 이용한 토양 함수 예측 기법을 개발하고자 하며, 예측인자로서 원격 탐측 기반의 토양함수자료, 강수량, 온도 등을 활용하고자 한다. SVM은 Kernel 함수를 이용하여 복잡한 비선형 관계를 선형 가정을 통해서 해석하는 기계학습 방법으로서 전역모델(global model)로서 다양한 수문기상분야에 적용이 이루어지고 있다. SVM의 장점은 일정 부분의 오차를 허용함으로서 모형의 일반화 측면에서 기존 인공신경망(artificial neural network, ANN)에 비해 우수한 성능을 나타내며, 특히 예측모형으로서 적용성이 매우 크다. 본 연구에서는 과거 토양 함수 자료와 강수, 온도, 위성 관측 기반 정보 등을 이용하여 모형을 적합시키고 이를 미계측 유역으로 확장하는데 연구의 목적이 있으며, 본 연구를 통해 제안된 모형은 용담댐 시험유역을 대상으로 적용되며 기존 ANN 모형 및 다중회귀분석 결과와 비교를 통해 모형의 적합성을 평가하고자한다.
본 논문은 Slotless BLDCM의 발열특성에 고려하여 열 발생을 최소화 하고자 다중 반응표면법을 적용하여 모터의 형상 및 권선 사양의 최적 선정에 관한 연구이다. 본 연구에서는 전류밀도의 최소화를 목적함수로 하여 형상 및 권선 사양의 최적화를 실시하였다. 변수에 대한 영향도의 분석은 전자계 해석을 통한 결과값을 통하여 실시하였으며, 열적 특성을 파악하기 위해서 전자계-열계의 해석을 통해서 최적값의 열적 안정성을 파악하였다.
본 연구에서는 낙동강수계 일별 운영 계획 수립을 위한 저수지군 최적 연계운영 모형(CoMOM, Coordinated Multiple Reservoir Operating Model)을 개발하였다. 이를 위하여 동적 네트워크 흐름 모형을 기반으로 한 다중목적 혼합 정수 목표계획 모형 (MOMIGP, Multiple Objective Mixed Integer Goal-Programming)을 수립하였다. 이 모형은 월말 목표 수위 및 운영 제약 등을 목표 계획법으로 구성하였으며, 일별 운영의 특성을 고려하여 하도추적의 효과를 반영하였고, 선형화된 발전함수를 이용하여 발전량을 최대화 하도록 한 후 정확한 발전량을 사후에 산정하였다. 이와 같이 수립된 수학 모형을 GUI를 비롯한 프로그램(CoMOM)으로 개발하여 사용자가 편리하게 수행 할 수 있도록 하였다. 이 프로그램은 의사결정자의 운영 목표와 의도를 효과적으로 반영할 수 있도록 대화형 목표 계획법을 구현하였으며, 상충되는 여러 목적에 대하여 가능한 파래토(Pareto) 최적해를 제시하고 의사결정자가 가장 선호하는 해를 선택하도록 대화형 다중목적 계획법 CBITP(Convex hull of individual maxima Based Interactive Tchebycheff Procedure)를 활용하여 구현하였다. 한편 객체지항적 프로그램 기법을 활용하여 수계 내의 노드(저수지, 수요지, 발전소 등)를 추가 하거나 삭제 할 수 있도록 하여, 다른 수계로의 확장이 용이하도록 개발하였다.
본 연구에서는 무선 네트워크 접속기능을 갖춘 유비쿼터스 컴퓨팅 환경에서의 다중 동적 의사결정지원시스템(Multi-Dynamic Decision Support System in Ubiquitous Computing; UMD-DSS)을 제안한다. 즉 유비쿼터스 컴퓨터환경에서의 의사결정은 다수의 유동 참여자들이 시시각각 변화하는 정보를 기반으로 의사결정자들 개인의 목적과 참여된 집단의 목적을 동시에 만족하는 의사결정을 지원한다. 이를 위해 본 연구에서 제안하는 의사결정지원시스템은 혼합형구조를 이룬다. 개별 의사결정자들의 의사결정을 지원하는 분산형 의사결정지원시스템과 의사결정자가 속한 집단의 목적함수를 최대화를 지원하는 중앙집중형 의사결정 시스템이 혼합된 혼합형 의사결정지원시스템을 제안한다. 혼합형 의사결정지원시스템의 기본 구조는 의사결정에 참여하는 개별에이전트들로부터 인식된 상황정보를 이용한 의사결정프로세스를 관리하는 의사결정프로세서, 다중 에이전트들을 관리하는 다중 에이전트 프로세서 및 의사결정을 위해 필요한 지식을 관리하는 지능적 지식관리 프로세서로 구성된다. 유비쿼터스 컴퓨터 환경에서의 의사결정은 시간과 공간의 제약을 받지 않으며 다중 유동의사결정자의 의사결정을 동시에 할 수 있고, 이러한 의사결정이 의사결정자가 속한 집단의 목적함수를 최대화 할 수 있도록 해야 한다. 이에 적합한 비구조적인 문제인 유풀필먼트(u-Fulfillment)의 특징은 다음과 같다. 의사결정에 참여하는 유동 의사결정자가 다수이며 시시각각으로 변하는 문제에 즉각적인 대응이 요구되고 단기간의 공유된 정보를 활용하여 의미 있는 의사 결정이 요구되는 특징이 있다. 따라서 본 연구에서는 유풀필먼트(u-Fulfillment)를 본 연구의 활용 대상으로 하여 유비쿼터스 다중 동적 의사결정지원시스템을 제안한다.
본 논문에서는 캐비테이션 터널에서의 소음계측용 청음기 배열 설계를 위한 최적화 기법을 제안하였다. 제안된 최적설계 기법은 배열 설계인자 및 목적함수 정의 그리고 최적화 알고리즘 적용 등의 내용으로 구성되어 있다. 설계인자 정의는 원형배열, 나선배열, 다중나선배열을 대상으로 하였다. 목적함수는 주엽의 빔폭과 최대 부엽 크기를 동시에 고려할 수 있도록 정의하였다. 최적화 알고리즘으로는 광역 최적화 기법의 일종인 VFSR 기법을 적용하였다. 최적 설계기법을 각 배열에 적용 후 도출된 최적 배열을 대상으로 최대 부엽크기 및 주엽의 빔폭을 분석하였다. 끝으로 캐비테이션 터널 내부의 다중반사를 고려한 빔형성 결과 평가를 통해 본 기법의 유용성을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.