• Title/Summary/Keyword: 다중경로 패킷 전달

Search Result 24, Processing Time 0.023 seconds

A Comparative Study of Aggregation Schemes for Concurrent Transmission over Multiple WLAN Interfaces (다중 무선랜 인터페이스 전송을 위한 결합 방식의 성능 연구)

  • Saputra, Yuris Mulya;Hwang, Hwanwoong;Yun, Ji-Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.7
    • /
    • pp.18-25
    • /
    • 2014
  • To increase wireless capacity, the concurrent use of multiple wireless interfaces on different frequency bands, called aggregation, can be considered. In this paper, we focus on aggregation of multiple Wi-Fi interfaces with packet-level traffic spreading between the interfaces. Two aggregation schemes, link bonding and multipath TCP (MPTCP), are tested and compared in a dualband Wi-Fi radio system with their Linux implementation. Various test conditions such as traffic types, network delay, locations, interface failures and configuration parameters are considered. Experimental results show that aggregation increases throughput performance significantly over the use of a single interface. Link bonding achieves lower throughput than MPTCP due to duplicate TCP acknowledgements (ACKs) resulting from packet reordering and filtering such duplicate ACKs out is considered as a possible solution. However, link bonding is fast responsive to links' status changes such as a link failure. It is shown that different combinations of interface weights for packet spread in link bonding result in different throughput performance, envisioning a spatio-temporal adaptation of the weights. We also develop a mathematical model of power consumption and compare the power efficiency of the schemes applying different power consumption profiles.

A TDMA-based Relay Protocol for Voice Communication on a Small Group (소규모 그룹에서의 음성 통신을 위한 TDMA 기반의 릴레이 프로토콜)

  • Hwang, Sangho;Park, Chang-Hyeon;Ahn, Byoungchul
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.1
    • /
    • pp.259-266
    • /
    • 2013
  • Since the wireless communications have a limited transmission, the devices just around a master node can exchange data. Though Bluetooth and Zigbee support ad hoc, they are not appropriate for real-time voice communications. In this paper, we present a TDMA-based relay protocol for several users to communicate simultaneously. The proposed protocol can relay data or voice to other nodes in real-time by the multi-hop transmission method using TDMA. And the proposed protocol improves the network performance by allocating different frequencies to the slaves depending on the routing path scheduled by the routing table. NS-2 simulation shows that the performance of the proposed protocol is good in terms of the transmission delay and pecket loss probability in the real-time voice transmission.

A MAC Enhancement Technique for Quality of Service Guarantee in Wireless Local Area Networks (무선 네트워크에서 QoS 보장을 위한 MAC 향상 기법)

  • Lee, Dong-Geon;Kim, Byoung-Hoon;Tak, Sung-Woo
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.10
    • /
    • pp.1446-1459
    • /
    • 2008
  • In an infrastructure-based wireless network, an access point is used for all communications among mobile devices. However, when a mobile device moves into a dead Bone, a connectivity disruption between the mobile device and the access point occurs. Such connectivity disruption consequently leads to another connectivity disruption between the mobile device moving toward the dead zone and other wireless-enabled devices located within the area of the infrastructure-based wireless network. To cope with the connectivity disruption in the infrastructure-based wireless network the ad hoc network that dynamically forms a network without any preexisting communication infrastructure needs to be set up to provide seamless connections among mobile devices. In this paper, we propose the DNSQ-MAC (Dynamic Network State aware QoS-Medium Access Control) technique that meets the deadlines of MAC frames forwarded over hop-by-hop multipaths and guarantees the QoS performance of an ad hoc-based wireless network. Mobile devices incorporating the DNSQ-MAC technique are capable of adjusting to the new dynamic network status in order to enhance the QoS performance in the ad hoc-based wireless network. A case study which exploits the Qualnet simulator shows that the proposed DNSQ-MAC technique can guarantee the deadlines of MAC frames forwarded over hop-by-hop multipaths and enhance the QoS performance of various routing protocols and packet schedulers running on the network layer above the MAC layer.

  • PDF

Dual Process Linear Protection Switching Method Supporting Node Redundancy (노드 이중화를 위한 이중 프로세스 선형 보호 절체 방법)

  • Kim, Dae-Ub;Kim, Byung Chul;Lee, Jae Young
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.9
    • /
    • pp.26-37
    • /
    • 2016
  • The core technologies of the current transport network are OAM and protection switching to meet the sub-50ms protection switching time via a path redundancy when a link or node failure occurs. The transport networks owned by public network operators, central/local governments, and major enterprises are individually configured and managed with service resiliency in each own protected sub-network. When such networks are cascaded, it is also important to provide a node resiliency between two protected sub-networks. However, the linear protection switching in packet transport networks, such as MPLS-TP and Carrier Ethernet, does not define a solution of dual node interconnection. Although Ethernet ring protection switching covers the dual node interconnection scheme, a large amount of duplicated data frames may be flooded when a failure occurs on an adjacent (sub) ring. In this paper, we suggest a dual node interconnection scheme with linear protection switching technology in multiple protected sub-networks. And we investigate how various protected sub-network combinations with a proposed linear or ring protection process impact the service resiliency of multiple protected sub-networks through extensive experiments on link and interconnected node failures.