• Title/Summary/Keyword: 다점 프레스

Search Result 4, Processing Time 0.02 seconds

Development of Two-Sided Multi-Press Technology for FCP Shape Implementation (FCP 형상구현을 위한 양면다점프레스 기술 개발)

  • Jeong, Kyeong-Tae;Kin, Ki-Hyuk;Lee, Dong-Hoon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.83-84
    • /
    • 2019
  • Free-form buildings refer to geometric external structures in curved form, unlike conventional structures with straight lines. The development of construction technologies for the implementation of these Free-form buildings is ongoing. However, there are still many restrictions on the construction technology of Free-form buildings, resulting in problems such as increased construction period and increased construction costs. Therefore, it is urgent to develop building technology for the construction of Free-form building in order to secure competitiveness in the global Free-form building market. Accordingly, this study proposes Two-sided multi-point press technology that can solve problems of existing technology and implement FCP(Free-form Concrete Panel).

  • PDF

A Study on the Mold Connecting Technology of the Lower Multi-point Press for Improving Accuracy of Free-form Concrete Panels (비정형 콘크리트 패널의 정확성 향상을 위한 하부 다점 프레스의 거푸집 연결기술에 관한 연구)

  • Yun, Ji-Yeong;Youn, Jong-Young;Lee, Donghoon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.6-7
    • /
    • 2021
  • Although the development of free-form architectural technology continues, it consumes a lot of money and time due to the one-time formwork and the difficulty of maintaining quality due to manual work. To this end, in this study, a shape connection technique was proposed and verified to improve the limitations of implementing the curved surface of the existing lower multi-point press. In order to improve the accuracy of the shape, a curved surface was implemented using a silicon cap and a silicon plate. As a result of the error analysis of the shape, a small value of less than 3 mm was found. This study can implement more accurate curved surfaces than conventional technologies and produce high-quality free-form panels.

  • PDF

Application of IDA Method for Hull Plate Forming by Multi-Point Press Forming (다점 프레스를 이용한 곡면 성형의 가공 정보 산출을 위한 IDA방법)

  • Yoon, Jong-Sung;Lee, Jang-Hyun;Ryu, Cheol-Ho;Hwang, Se-Yun;Lee, Hwang-Beom
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.75-82
    • /
    • 2008
  • Flame bending has been extensively used in the shipbuilding industry for hull plate forming In flame bending it is difficult to obtain the desired shape because the residual deformation dependson the complex temperature distribution and the thermal plastic strain. Mechanical bending such as reconfigurable press forming multi-point press forming or die-less forming has been found to improve the automation of hull plateforming because it can more accurately control the desired shape than line heating. Multi-point forming is a process in which external forces are used to form metal work-pieces. Therefore it can be a flexible and efficient forming technique. This paper presents an optimal approach to determining the press-stroke for multi-point press forming of curved shapes. An integrated configuration of Finite element analysis (FEA) and spring-back compensation algorithm is developed to calculate the strokes of the multi-point press. Not only spring-back is modeled by elastic plastic shell elements but also an iterative algorithm to compensate the spring-back is applied to adjust the amount of pressing stroke. An iterative displacement adjustment (IDA) method is applied by integration of the FEA procedure and the spring-back compensation work. Shape deviation between the desired surface and deform£d plate is minimized by the IDA algorithm.

Mechanical Bending Process and Application for a Large Curved Shell Plate by Multiple Point Press Machine (무금형 다점 펀치를 사용한 선체외판의 분할 성형 가공 정보 계산 시스템 개발)

  • Hwang, Se-Yun;Lee, Jang-Hyun;Ryu, Cheol-Ho;Han, Myung-Soo;Kim, Kwang-Ho;Kim, Kwang-Sik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.6
    • /
    • pp.528-538
    • /
    • 2011
  • As a forming method for curved hull plates more efficient than the flame bending, mechanical bending using multi point press forming and die-less forming is discussed in this paper. the mechanical forming is a flexible manufacturing system for automatically forming of hull parts. It is especially suited to varied curved parts. This paper discusses a multiple point pressing machine composed of a pair of reconfigurable punches in order to achieve the rapid forming of curved hull plates using division forming and presents how forming information is obtained from the given design surface. Although the mechanical forming can be efficient in the metal forming, spring back after pressing is a phenomenon which must be carefully considered when quantifying the process variables. If the spring back is not accurately controlled, the fabricated shell plate cannot meet assembly tolerance. This paper describes the principles to calculate the proper stroke of each punch at the divided areas. the strokes are determined by an iterative process of sequential pressing and spring back compensation from an unfolded flat shape to its given design surface. FEA(finite element analysis) is used to simulate the spring back of the plate and the IDA(iterative displacement adjustment) method adjusts the offset of pressing punches from the deformation results and the design surface. The shape deviations of two surfaces due to spring back are compensated by integrated system using FEA and IDA method. For the practical application, It is aimed to develop an integrated system that can automatically perform the compensation process and calculate strokes of punches of the double sides' reconfigurable multiple-press machine and some experimental results obtained with mechanical bending are presented.