• Title/Summary/Keyword: 다점 계류 시스템

Search Result 5, Processing Time 0.022 seconds

Slow Drift Motion Analyses for a FPSO with Spread Mooring Systems (다점 계류된 원유 저장선에 대한 저주파수 운동 해석)

  • 이호영;박종환;곽영기
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.13 no.3
    • /
    • pp.195-201
    • /
    • 2001
  • The time simulation of slow drift motions of moored FPSO in waves is presented. The equation of motion based on Cummin's theory of impulse responses are employed, and are consisted of horizontal plane motions such as surge, sway and yaw. The added mass, wave damping coefficients, first order wave exciting forces and the second order wave drift forces involved in the equations are obtained from three-dimensional panel method in the frequency domain. The mooring lines are modeled as quasi-static catenary cable. As a numerical example, time domain analyses are carried out for a box-type FPSO in long crest irregular wave condition.

  • PDF

A Study on the Analysis of Multi-let Spread Mooring Systems (다점지지 계류시스템의 정적해석에 대한 연구)

  • Sin, Hyeon-Gyeong;Kim, Deok-Su
    • Journal of Ocean Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.53-60
    • /
    • 1995
  • A multi-leg spread mooring system for floating offshore structures is important, but the multi-leg static analysis is complicated due to the nonlinear behavior of each line and the effect of current which affects each line differently. The pretensioned position of the multi-leg mooring system obtained from the static equilibrium condition changes into a different position due to external loads and current. In this paper, the new position and the static tension at each line are caculated. The relation between the initial static equilibrium position and the new position due to the external loads is expressed in terms of the Taylor's series expansion. The Runge-Kutta $4^{th}$ method is employed in analyzing the 3-dimensional static cable nonlinear equations.

  • PDF

Drift Motion Analyses for a FPSO with Spread Mooring Systems (다점 계류된 원유 저장선에 대한 표류 운동 해석)

  • 이호영;임춘규;신현경
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.222-227
    • /
    • 2001
  • The time simulation of slow drift motions of moored FPSO in waves is presented. The equation of motion based on Cummin's theory of impulse responses are employed, and are consisted of horizonal plane -surge, sway and yaw. The added mass coefficients, wave damping coefficients, first order wave exciting forces and the second order wave drift forces involved in the equations are obtained from a three-dimensional panel method in the frequency domain. The mooring lines are modeled quasistatically as catenary for chains and touchdown. As for numerical example, time domain analyses are carried out for a box-type FPSO in long crest irregular wave condition.

  • PDF

Study on Optimum Design of FPSO Spread Mooring System (FPSO 다점 계류 시스템의 최적 설계 연구)

  • Lim, Yu-Chang;Kim, Kyung-Su;Choung, Joon-Mo;Kim, Jae-Woo;Kim, Jin-Tae;Yeo, Seung-Hoon
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.6
    • /
    • pp.61-66
    • /
    • 2009
  • For a spread-moored FPSO (Floating Production, Storage, & Off-loading) subjected to environmental excitation from waves, current, and wind, a procedure to determine optimum length and stiffness of mooring lines is suggested using quasi-static frequency domain response analyses. Coupled relations between design parameters are closely examined. In consideration of this, optimized design parameters are proposed based on minimum weight condition. The initial design parameters for numerical analyses are calculated using the static catenary equation of mooring lines. It is demonstrated the line tension and vessel's offset are influenced by the mooring line length and stiffness. Accordingly it is suggested the optimum vessel's offset range should be determined considering line fatigue damage. The availability and limitation of the application of quasi-static analysis method for spread mooring system are explained by comparing the result of time domain analysis with one of frequency domain analysis.

Fatigue Damage Combination for Spread Mooring System under Stationary Random Process with Bimodal Spectrum Characteristics (바이모달 스펙트럼 특성을 가지는 정상확률과정에 대한 다점계류라인의 피로손상도 조합기법 연구)

  • Lim, Yu-Chang;Kim, Kyung-Su;Choung, Joon-Mo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.6
    • /
    • pp.813-820
    • /
    • 2010
  • The spread mooring system for FPSO is developed to explore deep sea area, in which swell is dominant. It is known that the tension response of mooring lines in this sea area shows bimodal spectrum. Assuming normal distribution of tension profile and Rayleigh distribution of tension amplitude, the power spectral density function (PSD) of the mooring tension under the bimodal stationary random process is applied for the calculation of spectrum fatigue. Three popular methods, which are simple summation method, combined spectrum method and Jioa-Moan method, are used to combine fatigue damages from bimodal spectrum characteristics. Each damage value is compared with damage using Rainflow Cycle Counting (RCC) method which is believed to be close to exact solution. Vanmarcke' parameter and RMS(Root Mean Square) ratio are employed to assess relative damage variations between from RCC method and from three combination methods. Finally the most reliable fatigue damage combining method for spread mooring system is suggested.