• 제목/요약/키워드: 다이 인서트

검색결과 4건 처리시간 0.018초

파인블랭킹 공정에서 V-링 압력과 클리어런스가 다이 롤 높이에 미치는 영향에 관한 연구 (A Study on the Effect of V-Ring Pressure and Clearance on the Die Roll Height Through the Fine Blanking)

  • 이춘규;김종덕;김영춘
    • 한국산학기술학회논문지
    • /
    • 제14권12호
    • /
    • pp.6060-6065
    • /
    • 2013
  • 유효 전단면의 크기를 최대가 되도록 하기 위해서는 다이 롤 높이의 최소화가 매우 중요하다. 본 연구에서는 V-링 압입량의 변화와 클리어런스의 변화에 대한 다이 롤 변화를 연구하였다. V-링 거리를 2mm로 고정하고 클리어런스가 다른 다이인서트를 적용할 수 있는 파인블랭킹 금형을 제작하여 전단해석과 실험을 진행하였다. 각 실험으로부터 시편을 채취하여 다이 롤 높이를 분석한 결과 V-링의 압력이 재료의 유동을 효과적으로 억제하고 펀치와 다이 사이의 클리어런스가 재료 두께에 대하여 1%의 경우가 다이 롤 높이가 낮게 됨을 알 수 있었다.

평기어의 정밀 냉간단조 금형설계 (Die design on the Precision Cold Forging of Spur Gear)

  • 권혁홍
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1998년도 추계학술대회 논문집
    • /
    • pp.242-247
    • /
    • 1998
  • The conventional closed-die forging processes had been applied to forging of the spur gears. But this type process requires high pressure. The commercial finite element analysis code ANSYS for the stress and elastic deformation of non-axisymmetric die was adopted in this study. In the non-axisymmetric die such as gear forging, maximum stresses were imposed on the tip of the gear tooth. When the stress exceeds yield strength of insert die, many approaches were attemped to prevent the die failure. Good shaped products are forged successfully. This type process could by used as an advanced technique to replace conventional hobbing process of gear.

  • PDF

유한요소법을 이용한 예압된 금형의 응력해석 (Stress Analysis of the Prestressed Dies by Using FEM)

  • 여홍태;최영;허관도
    • 한국정밀공학회지
    • /
    • 제16권6호
    • /
    • pp.114-122
    • /
    • 1999
  • By using the FEM, a method for the stress analysis of the presented dies has been proposed. In this method, FEM and Lame equation are used for the analysis of the die insert and the stress ring, respectively. The proposed method includes the calculation of the contact pressure between the die insert and the stress ring. To show the validity, the proposed method has been applied to the simple test problem. The results of the stress analysis have been compared with the results of ANSYS, a commercial FE-code. Cold extrusion has been simulated by using the rigid-plastic FEM and the results of the deformation analysis have been used as the input of the die structure analysis. The stress states of the prestressed extrusion die have been obtained. The stress analysis of the die insert with stress rings has also been performed during extrusion.

  • PDF

다단냉간단조 비가공 타입에서 볼하우징 인서트 다이의 금형설계 검증 (Mold-design Verification of Ball Housing Insert Die in Non Processing Type Multi-stage Cold Forging)

  • 황원석;최종원;정의은;강명창
    • 한국기계가공학회지
    • /
    • 제20권12호
    • /
    • pp.8-15
    • /
    • 2021
  • Cold forging is a method in which molding is performed at room temperature. It has a high material recovery rate and dimensional precision and produces excellent surface quality, and it is mainly used for the production of bolted or housing products. The lifespan of cold forging molds is generally determined by the wear of the mold, plastic deformation of the mold, and fatigue strength. Cold forging molds are frequently damaged due to fatigue destruction rather than wear and plastic deformation in a high-temperature environment as it is molded at room temperature without preheating the raw material and mold. Based on the results analyzed through FEM, an effective mold structure design method was proposed by analyzing the changes in tensile and compressive stresses on molds according to the number of molds and reinforcement rings and comparing the product geometry and mold stress using three existing mold models.