• Title/Summary/Keyword: 다이어프램 스프링

Search Result 9, Processing Time 0.026 seconds

Load Characteristics and Sensitivity Analysis for an Automotive Clutch Diaphragm Spring (자동차 클러치 다이어프램 스프링 하중 특성 및 민감도 해석)

  • Lee, Byoung-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.1
    • /
    • pp.54-59
    • /
    • 2006
  • An analytical solution for deflection-load characteristics of a conical disk spring used especially in the automotive manual transmission clutch applications is proposed in order to take into account the effects of friction and large deformation. The conical disk spring, or the diaphragm spring, has a hinge support, an application point of release load at the tip of the fingers and an application point of clamp load near but inside the outer perimeter of the conical disk spring. The friction coefficient is assumed to be a constant regardless of the speed of deflection and the magnitude of loads. Comparison with experimental shows a good agreement with the analytical prediction. Also, the sensitivity of the clamp load due to variations in the geometrical parameters of the conical disk spring is calculated and discussed.

Development of a diaphragm type actuator (다이어프램형 방식의 파일럿 액추에이터 개발)

  • Lee, Joongyoup;Jeong, Daeseong;Han, Sangyeop
    • Aerospace Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.160-166
    • /
    • 2014
  • The shutoff valve of a Liquid Rocket Engines (LRE) controls the flow of propellant between turbo-pump and combustion devices of LRE using pilot pressure and spring force. The shutoff valve is closed when the pilot pressure is removed from the diaphragm type actuator. During designing process of life cycle is when should be analyzed according to the characteristics of forces with respect to the opening and closing of diaphragm actuator. A valve has been designed to adjust the control pressure which is required to open a poppet and to determine the working fluid pressure at which a valve starts to close. During flow capacity test under room temperature as a part of life cycle tests, the leakage in diaphragm was occurred due to the leakage of sheet welding sections. The operating cycle of the diaphragm type actuator is about 61 times with 22 MPa of pilot pressure.

Finite Element Analysis and Optimal Design of Automobile Clutch Diaphragm Spring (자동차 클러치 다이어프램 스프링의 유한요소해석 및 최적설계)

  • Lee, Chun-Yeol;Chae, Yeong-Seok;Gwon, Jae-Do;Nam, Uk-Hui;Kim, Tae-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.6 s.177
    • /
    • pp.1616-1623
    • /
    • 2000
  • A diaphragm spring is an important component of a clutch assembly, characteristics of which depends largely on that of a diaphragm spring. A diaphragm spring is subject to high stress concentration in driving condition, which frequently causes cracks and fracture around finger area. In this paper, behavior of a diaphragm spring is analysed by finite element method to calculate sensitivity of design parameters, which is used to perform optimal design of diaphragm spring shape. As an object function, hoop stresses are taken and minimized to improve durability. Characteristics of the diaphragm is used as equality constraint to maintain the original design purpose and sequential linear programming(SLP) is utilized as an optimization tool. With optimized design, it is verified that concentrated stress is decreased maintaining release load characteristic.

Development of Contact Point Estimation Algorithm of Dry type Clutch with Considering the friction pad wear (마찰패드의 마모를 고려한 건식 클러치의 접촉점 추종 알고리즘 개발)

  • Kim, Sung-Mo;Kim, Mo-Seong;Shin, Chang-Woo;Lim, Won-Sik;Cha, Suk-Won
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.6
    • /
    • pp.692-696
    • /
    • 2011
  • A clutch is a very important component when engine starts and gear shifting is needed. The clutch the most commonly used is the dry clutch. This type of clutch has pads, and they are worn after disengagement of clutch little by little. The characteristics of the clutch changes as these pads wear, so wear needs to be measured, and the clutch should be controlled for proper operation. In this study, the clutch contact point estimation algorithm has been developed. From this algorithm, clutch force map changes depending on wear, and the clutch operates properly. We also see the shifting transient of a vehicle for drivability with throttle valve position control and synchronizer movement.

Evaluation of Performance and Service Life of Low Pressure LPG Regulators for Home Use (가정용 LP가스 저압조정기의 성능 및 수명 평가)

  • Kim Young-Gyu;Cho Seok-Beom;Kim Pil-Jong
    • Journal of Energy Engineering
    • /
    • v.15 no.1 s.45
    • /
    • pp.23-27
    • /
    • 2006
  • This paper presents the evaluation of LPG (Liquefied petroleum gas) regulators for home use. For the evaluation, several properties of the regulators were experimentally analyzed, such as the operation of safety device, the adjusting and lock-up pressure, the adjusting spring and the diaphragm, with respect to the used time of the regulators. Experimental results showed that the initial operation performance of regulators were degraded with increase of the service time and also showed that the degradation of the performance and material property could become serious after six-year-use of the regulator.

A Study on the Dynamic Characteristics of a Electric Motor Clutch for Commercial Vehicles (상용차용 전동식 클러치의 동적특성에 관한 연구)

  • Cho, Ihnsung;Jung, Jaeyoun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.1
    • /
    • pp.52-58
    • /
    • 2014
  • To improve the performance of clutch actuator of clutch-by-wire system for commercial vehicles, it is necessary to understand the driving characteristics of the system. To explain and predict the effects of driving characteristics on clutch characteristics, AMESim software is used. The simulation model of clutch-by-wire system is developed in the AMESim environments under the geometrical dimensions and driving mechanisms of the clutch-by-wire system, such as the rotation speed of the DC motor, the gear ratio of the reducer, the design parameters of the release fork, the coefficient of the clutch diaphragm spring, and so on. The results show that the theoretical analysis of the clutch-by-wire system for commercial vehicles using the AMESim software find out the driving characteristics of the clutch actuator, and predict the performance characteristics of the clutch-by-wire system.

Effects of Flow Rate and Discharge Pressure with Compressing Spring in Non-diaphragm Type Stem of Water Pressure Reducing Valve (급수용 감압밸브의 비다이어프램 스템에서 압축스프링에 따른 유량 및 토출압력 효과)

  • Byeon, Jae-Uk;Kim, Chi-Ho;Park, Seong-Hwan;Lee, Myung-Won;Kang, Myungchang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.5
    • /
    • pp.103-109
    • /
    • 2019
  • The pressure reducing valve for water is controlled by the load of the compression spring and the force of the fluid acting on the diaphragm of the stem. Repeated upward and downward reciprocation of the pressure-reducing valve stem damages the diaphragm, resulting in leakage. In this study, we designed a stem without a diaphragm and adjusted the stiffness of the compressing spring. In order to select the spring stiffness, springs offering a stiffness of -20%, -10%, 0%, and 10% with respect to the stiffness of the compression spring attached to the existing pressure reducing valve stiffness. A prototype for the pressure reducing valve was fabricated and the pressure change was evaluated for the target static pressure (6 bar) by testing the pressure characteristics after mounting the modified stem and each compression spring. Evaluation of the pressure characteristics was carried out using ASSE 1003 and KS B 6153. In addition, the flow rates were compared by internal flow analysis of the conventional pressure reducing valve and the pressure reducing valve using the modified stems, and the flow analysis was performed using Solidworks flow simulation 2018. The spring stiffness was constantly discharged at the target static pressure of 3.793 kgf/mm, and the flow rate was increased by about 15% compared with the conventional pressure reducing valve.

Aging Characteristics of Low Pressure LPG Regulators for Domestic Use (가정용 LPG 저압조정기의 경년특성에 관한 연구)

  • Kim Young-Gyu;Kwon Jeong-Rock
    • Journal of the Korean Institute of Gas
    • /
    • v.3 no.1
    • /
    • pp.58-63
    • /
    • 1999
  • Experimental works were carried out to evaluate how the lapse of time affects the performance characteristics and the service life of low pressure LPG regulators for domestic use. Experimental results showed that the operating pressure of safety devices deviated from the opening pressure value and the closing pressure value from just 1 year after service, and the operating pressure of regulators used for 7${\~}$8 years notably deviated from the reference value of the adjusting pressure and the closing pressure. And the material properties of springs and diaphragms deteriorated after 5${\~}$6 years of service. Thus, it is estimated that low pressure LPG regulators have approximately 6 years of service life. However, it is highly recommended that regulators exceeding 5 years of service should be replaced for the safety of consumer and accident prevention even if they are operating normally.

  • PDF

Seismic Performance of Concrete-Filled Steel Piers Part I : Quasi-Static Cyclic Loading Test (강합성교각의 내진성능평가 Part I : 준정적 반복재하실험)

  • 조창빈;서진환;장승필
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.2
    • /
    • pp.9-19
    • /
    • 2002
  • Steel piers and concrete-filled steel(CFS) piers, in spite of reasonable strength, high ductility, small section, and fast construction, have not been considered as one of alternatives to RC piers even in the highly populated urban area where aseismic safety, limited space and fast construction are indispensably required. This paper, the first of two companion papers for the seismic performance of steel and CFS piers, tests steel and CFS piers under quasi-static cyclic loading to estimate their ductility and strength. Additional details such as rebars and base ribs are added to increase the ductility of a concrete-filled steel pier with minimum additional cost. Also, simplified numerical analyses using nonlinear spring and shell elements are examined for the estimation of the ductility and strength of concrete-filled steel piers and a steel pier. The result shows that concrete-filled steel peirs have higher energy absorption, i.e., ductility and strength than those of steel pier and increasing bonding between in-filled concrete and lower diaphragm, and the improved details of stress concentrated region would be important for the ductility and strength of a pier. Numerical results show that simplified modeling with nonlinear springs and shells has potential to be effective modeling technique to estimate the seismic performance of a concrete-filled steel pier.