• 제목/요약/키워드: 다이어프램 블로어

검색결과 3건 처리시간 0.018초

연료전지용 연료승압블로어 내부유동장 평가 (Internal Flow Analysis on the Fuel Cell's Blower)

  • 장춘만;최가람;탁봉열;김찬규
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.87.2-87.2
    • /
    • 2011
  • 1kW급 가정용 연료전지 블로어는 다이어프램방식에 의해 고압 및 일정유량의 가스를 이송시키는 역할을 하고 있다. 본 연구에서는 연료전지 중 연료승압블로어를 대상으로 흡입 및 토출시의 다이어프램 캐비티(Cavity) 내의 공기유동 특성을 수치해석을 적용하여 평가하였다.

  • PDF

연료전지용 연료승압 블로어 내부유동장 평가 (Internal Flow Analysis of a Fuel Pressurized Blower for Fuel Cell System)

  • 최가람;장춘만
    • 신재생에너지
    • /
    • 제7권3호
    • /
    • pp.29-35
    • /
    • 2011
  • This paper describes an internal flow characteristics of a fuel pressurized blower, used for 1kW domestic fuel cell system. To analyze the flow field inside the diaphragm cavity, compressible unsteady numerical simulation is introduced. SST model with scalable wall function is employed to estimate the eddy viscosity. Moving mesh system is applied to the numerical analysis for describing the volume change of a diaphragm cavity in time. Throughout numerical simulation with the modeling of the inlet and outlet valves in a diaphragm cavity, unsteady nature of an internal flow is successfully analyzed. Force variations on the lower plate of a diaphragm cavity are evaluated in time. It is found that the driving force at the suction stage of a diaphragm cavity is more necessary than that at the discharging stage.

연료전지용 캐소드 공기블로어의 비정상 내부유동장 연구 (Unsteady Internal Flow Analysis of a Cathode Air Blower Used for Fuel Cell System)

  • 장춘만;이종성
    • 신재생에너지
    • /
    • 제8권3호
    • /
    • pp.6-13
    • /
    • 2012
  • This paper describes unsteady internal flow characteristics of a cathode air blower, used for the 1 kW fuel cell system. The cathode air blower considered in the present study is a diaphragm type blower. To analyze the flow field inside the diaphragm cavity, compressible unsteady numerical simulation is performed. Moving mesh system is applied to the numerical analysis for describing the volume change of the diaphragm cavity in time. Throughout a numerical simulation by modeling the inlet and outlet valves in a diaphragm cavity, unsteady nature of an internal flow is successfully analyzed. Variations of mass flow rate, force and pressure on the lower moving plate of a diaphragm cavity are evaluated in time. The computed mass flow rate at the same pressure and rotating frequency of a motor has a maximum of 5 percent error with the experimental data. It is found that flow pattern at the suction process is more complex compared to that at the discharge process. Unsteady nature of internal flow in the cathode air blower is analyzed in detail.