• Title/Summary/Keyword: 다이아몬드공구

Search Result 144, Processing Time 0.024 seconds

Comparison of TiAlN DLC and PCD Tool Wear in CFRP Drilling (CFRP 드릴링에서 TiAlN DLC 코팅과 PCD의 공구마모 비교)

  • Baek, Jong-Hyun;Kim, Su-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.5
    • /
    • pp.77-83
    • /
    • 2022
  • A high-hardness tool material is required to reduce extreme abrasive wear when drilling carbon fiber reinforced plastic (CFRP). Single-crystal diamond is the hardest material in the world, but it is very expensive to be used as a cutting tool. Polycrystalline diamond (PCD) is a diamond grit fused at a high temperature and pressure, and diamond-like carbon (DLC) is an amorphous carbon with high hardness. This study compares DLC coatings and PCD inserts to conventional TiAlN-coated tungsten carbide drills. In fiberglass and carbon fiber reinforced polymer drilling, the tool wear of DLC-coated carbide was approximately half that of TiAlN-coated tools, and slight tool wear occurred in the case of PCD insert end drills.

A Study on the characteristics of the High Speed Machining for several Tool Materials change of Ellipse Mirror Machining to be used in Millimeter Wave Interferometer System (밀리미터파 간섭계용 타원 반사경의 공구 변화에 따른 고속절삭 특성 연구)

  • Lee, Sang-Yong;Kim, Geon-Hee;Kim, Hyo-Sik;Yang, Soon-Cheol;Hong, Chang-Deoc;Cho, Byung-Moo;Won, Jong-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.4
    • /
    • pp.22-27
    • /
    • 2007
  • This study aims to find the optimal cutting conditions, when ellipse mirrors consisted Aluminum alloy were made it the Millimeter-Wave Interferometer System mirror with several tools on the High-Speed Machine. Machining technique for precision machining characteristics of ellipse mirrors consisted Al6061 matter by Ball endmill is reported in this paper., Results of machining on the High-Speed Machine(using NCD(Natural Crystalline diamond), WC and coated TiAlN ${\phi}6mm$ ball endmill tool) had measurement of surface roughness and form accuracy with cutting conditions(the Feed rate, the Depth of cut and the Cutting speed). the Millimeter-Wave Interferometer System ellipse mirror had been machined foundational precision machining characteristics of aluminum.

  • PDF

A Study on the Machinability of Ceramics by Low Temperature Cooling Diamond Tool (다이아몬드 공구 내부 냉각법에 의한 세라믹스의 피삭성에 관한 연구)

  • 김정두
    • Journal of the Korean Professional Engineers Association
    • /
    • v.22 no.2
    • /
    • pp.10-18
    • /
    • 1989
  • New Materials such as fine ceramics have attracted much attention as structural materials. The industrial needs of machining such materials will be emphasized more and more in the future. The objective of this study is to supply useful knowledges for improvement by cooled cutting of sintered diamond tool. This study treats with experimental analysis of tool wear, surface roughness and thermal stress which will lead to the machinability of fine ceramics.

  • PDF

Machining of Micro Groove using Diamond Tool (다이아몬드 공구를 이용한 미세 홈 가공)

  • 임한석;김창호;김봉향;안중환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.75-79
    • /
    • 1995
  • A cutting experiment using diamond tool was performed to make the die cabity which is composed of micro groove with mirror surface. Fine cutting depth was generated by the elastic recovery of the modified tool holder on the conventional M/C. Surface roughness and profile were investigated with cutting speed and depth and through the low cutting speed of 10mm/min, Rmax 0.005 .mu. m or less of machined surface could be achieved.

  • PDF

Diamond Film Synthesis by MWCVD and Its Application to Cutting Tools (MWCVD에 의한 다이아몬드 필름의 합성과 절삭 공구에의 응용)

  • 서문규;김윤수
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.11
    • /
    • pp.979-985
    • /
    • 1993
  • Diamond films were synthesized using CH4-H2-Ar mixture gases by MWCVD, and cutting ability was tested after brazing them onto WC tools. Growth rates were in the range of 0.5~10${\mu}{\textrm}{m}$/hr depending on the deposition conditions, and diamond films with thickness of 100~300${\mu}{\textrm}{m}$ were obtained. Diamond tools brazed by RF induction method showed an enhanced cutting ability in the cutting test of Si single crystal rod.

  • PDF

A Study on the Machinability of Fine Ceramics (($Al_2O_3$)) (파인 세라믹 ($Al_2O_3$)의 被削性에 관한 硏究)

  • 김성겸;이용성
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.4
    • /
    • pp.604-610
    • /
    • 1989
  • This paper is concerned with the machinability of fine ceramics(Al$_{2}$O$_{3}$) by using sintered diamond tools. For this purpose, ceramics cutting experiments under various cutting conditions such as cutting speed, feed rate, and others were carried out. The main results are follows : (1) During the cutting of fine ceramics, the used tools were found to be slightly chattering at cutting speed of 70m/min, and at cutting speed of higher than this I found the fine ceramics difficult to be cut. (2) When I used a tool with large nose radius, there occured a small amount of wear on the flank of the tool. However, at the early stage of fine ceramics cutting, the tools with smaller nose radii were required mainly to prevent the chipping of the ceramics. (3) When the materials were dry-cut, the appropriate cutting speel was found to be lower than 40m/min, and when the materials were dry-cut, I could cut them without any difficulty even at the speed of 70m/min, the surface roughness of ceramics cut at the speed of 70m/min was considerly fine. (4) It is generally believed that the principal cutting force is the largest in the case of steels cutting, but I found the thrust cutting force to be larger than any other cutting forces in the case of ceramics cutting.

Tool Holder Design and Cutting Force Measurement of Diamond Turning Process (다이아몬드 터닝의 미세 절삭력 측정을 위한 tool holder 설계 및 절삭력 측정)

  • Jeong, S.H.;Kim, S.S.;Do, C.J.;Hong, K.H.;Kim, G.H.;Rui, B.J.
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.507-512
    • /
    • 2001
  • In this work, tool holder system has been designed and builted to measure cutting forces in diamond turning. This system design includes a 3-component piezo-electric tranducer. Initial experiments with tool holder system included verification of its predicted dynamic characteristics as well as a detailed study of cutting parameters. Tool holder system is modeled by considering the element dividing, material properties, and boundary conditions using MSC/PATRAN. Mode and frequency analysis of structure is simulated by MSC/NASTRAN, for the purpose of developing the effective design. Many cutting experiments have been conducted on 6061-T6 aluminum. Tests have involved investigation of velocity effects, and the effects of depth and feedrate on tool force. Forces generally increase with increasing depth of cut. Increasing feedrate does not necessarily lead to higher forces.

  • PDF

A Study on the Surfaces Machining Characteristics of Ultra-precision through SEM Measurement (SEM 측정법에 의한 초정밀 표면가공 특성연구)

  • 강순준;오상록;이갑조;김종관
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.34-41
    • /
    • 2004
  • The purpose of this paper is to look at the characteristics of surface finishing which is one of the form accuracies and to obtain the fundamental technical data from the process of machining with diamond tool through experiment and theoretical analysis. The experiments were conducted with domestic made ultra-precision machine and MCD.PCD tool, with aluminum alloyed material and brass being used for the work pieces. The goal of the size accuracy was set to 100nm. The most suitable tool nose radius and machining conditions were selected, and the variations of the surface roughness were observed using SEM method while machining the distance of up to 500km. These data were evaluated and they examined the variation of the machined surfaces while cutting up to 500km of machining distance. At the same time, the state for the wear of diamond tool nose was analyzed and carefully examined through the newest measuring device. Additionally, the characteristics of ultra-precision machining technology were studied through visual analysis.

  • PDF

The Comparison of Cutting Characteristics of PCD and MCD Tools in the Ultraprecision Turning of Aluminum Alloy (알루미늄 합금의 초정밀 선삭 가공에 있어서 PCD와 MCD 공구의 절삭 특성 비교)

  • Kim, Hyeong-Cheol;Ham, Seung-Deok;Hong, U-Pyo;Park, Yeong-U;Kim, Gi-Su
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.12
    • /
    • pp.68-75
    • /
    • 2000
  • This paper presents the construction of an ultra-precision machining system and machining experiments using the developed system. The system is composed of air bearing system, granite bed, air pad, and linear feeding mechanism. The cutting conditions have great effect on the surface quality in ultra-precision machining. the ultra-precision machining is mainly processed by several ${\mu}{\textrm}{m}$ depth of cut and feed rate. For this, tools with sharper cutting edge and less tool wear are needed. To satisfy these requirement, diamond is generally used as a tool material for ultra-precision machining. In order to evaluate the cutting characteristics of the PCD and MCD tools on the aluminum alloy, the machining experiments performed using the developed system.

  • PDF