• Title/Summary/Keyword: 다엽조준기

Search Result 3, Processing Time 0.015 seconds

Comparison of the Dose of the Normal Tissues among Various Conventional Techniques for Whole Brain Radiotherapy (여러 통상적인 전뇌방사선치료 기법에서의 정상조직의 조사선량 비교)

  • Kang, Min-Kyu
    • Radiation Oncology Journal
    • /
    • v.28 no.2
    • /
    • pp.99-105
    • /
    • 2010
  • Purpose: To compare radiation dose of the brain and lens among various conventional whole brain radiotherapy (WBRT) techniques. Materials and Methods: Treatment plans for WBRT were generated with planning computed tomography scans of 11 patients. A traditional plan with an isocenter located at the field center and a parallel anterior margin at the lateral bony canthus was generated (P1). Blocks were automatically generated with a 1 cm margin on the brain (5 mm for the lens). Subsequently, the isocenter was moved to the lateral bony canthus (P2), and the blocks were replaced into the multileaf collimator (MLC) with a 5 mm leaf width in the craniocaudal direction (P3). For each patient plan, 30 Gy was prescribed at the isocenter of P1. Dose volume histogram (DVH) parameters of the brain and lens were compared by way of a paired t-test. Results: Mean values of $D_{max}$ and $V_{105}$ of the brain in P1 were 111.9% and 23.6%, respectively. In P2 and P3, $D_{max}$ and $V_{105}$ of the brain were significantly reduced to 107.2% and 4.5~4.6%, respectively (p<0.001). The mean value of $D_{mean}$ of the lens was 3.1 Gy in P1 and 2.4~2.9 Gy in P2 and P3 (p<0.001). Conclusion: WBRT treatment plans with an isocenter located at the lateral bony canthus have dosimetric advantages for both the brain and lens without any complex method changes.

Quality Assurance of Leaf Speed for Dynamic Multileaf Collimator (MLC) Using Dynalog Files (Dynalog file을 이용한 동적다엽조준기의 Leaf 속도 정도관리 평가)

  • Kim, Joo Seob;Ahn, Woo Sang;Lee, Woo Suk;Park, Sung Ho;Choi, Wonsik;Shin, Seong Soo
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.2
    • /
    • pp.305-312
    • /
    • 2014
  • Purpose : The purpose of this study is to analyze the mechanical and leaf speed accuracy of the dynamic multileaf collimator (DMLC) and determine the appropriate period of quality assurance (QA). Materials and Methods : The quality assurance of the DMLC equipped with Millennium 120 leaves has been performed total 92 times from January 2012 to June 2014. The the accuracy of leaf position and isocenter coincidence for MLC were checked using the graph paper and Gafchromic EBT film, respectively. The stability of leaf speed was verified using a test file requiring the leaves to reach maximum leaf speed during the gantry rotation. At the end of every leaf speed QA, dynamic dynalog files created by MLC controller were analyzed using dynalog file viewer software. This file concludes the information about the planned versus actual position for all leaves and provides error RMS (root-mean square) for individual leaf deviations and error histogram for all leaf deviations. In this study, the data obtained from the leaf speed QA were used to screen the performance degradation of leaf speed and determine the need for motor replacement. Results : The leaf position accuracy and isocenteric coincidence of MLC was observed within a tolerance range recommanded from TG-142 reports. Total number of motor replacement were 56 motors over whole QA period. For all motors replaced from QA, gradually increased patterns of error RMS values were much more than suddenly increased patterns of error RMS values. Average error RMS values of gradually and suddenly increased patterns were 0.298 cm and 0.273 cm, respectively. However, The average error RMS values were within 0.35 cm recommended by the vendor, motors were replaced according to the criteria of no counts with misplacement > 1 cm. On average, motor replacement for gradually increased patterns of error RMS values 22 days. 28 motors were replaced regardless of the leaf speed QA. Conclusion : This study performed the periodic MLC QA for analyzing the mechanical and leaf speed accuracy of the dynamic multileaf collimator (DMLC). The leaf position accuracy and isocenteric coincidence showed whthin of MLC evaluation is observed within the tolerance value recommanded by TG-142 report. Based on the result obtained from leaf speed QA, we have concluded that QA protocol of leaf speed for DMLC was performed at least bimonthly in order to screen the performance of leaf speed. The periodic QA protocol can help to ensure for delivering accurate IMRT treatment to patients maintaining the performance of leaf speed.

A Comprehensive Dosimetric Analysis of Inverse Planned Intensity Modulated Radiation Therapy and Multistatic Fields Technique for Left Breast Radiotherapy (좌측 유방 방사선치료를 위한 역치료계획의 세기변조방사선치료와 다중빔조사영역치료기법 사이의 포괄적 선량측정 분석)

  • Moon, Sung-Kwon;Youn, Seon-Min
    • Radiation Oncology Journal
    • /
    • v.28 no.1
    • /
    • pp.39-49
    • /
    • 2010
  • Purpose: This aim of this study is to analyze the dosimetric difference between intensity-modulated radiation therapy (IMRT) using 3 or 5 beams and MSF in the radiotherapy of the left breast. Materials and Methods: We performed a comparative analysis of two radiotherapy modalities that can achieve improved dose homogeneity. First is the multistatic fields technique that simultaneously uses both major and minor irradiation fields. The other is IMRT, which employs 3 or 5 beams using a fixed multileaf collimator. We designed treatment plans for 16 early left breast cancer patients who had taken breast conservation surgery and radiotherapy, and analyzed them from a dosimetric standpoint. Results: For the mean values of $V_{95}$ and dose homogeneity index, no statistically significant difference was observed among the three therapies. Extreme hot spots receiving over 110% of the prescribed dose were not found in any of the three methods. A Tukey test performed on IMRT showed a significantly larger increase in exposure dose to the ipsilateral lung and heart than multistatic fields technique (MSF) in the low-dose area, but in the high-dose area, MSF showed a slight increase. Conclusion: In order to improve dose homogeneity, the application of MSF, which can be easily planned and applied more widely, is considered an optimal alternative to IMRT for radiotherapy of early left breast cancer.