• Title/Summary/Keyword: 다상 물질 상호 작용

Search Result 2, Processing Time 0.018 seconds

Numerical simulation on propagation of hydrocarbon flame in a deformable tube (변형하는 가스 이송관 내에서 전파하는 탄화수소화염의 수치 해석 모델링)

  • Gwak, Min-Cheol;Yoh, Jai-Ick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.304-308
    • /
    • 2012
  • This paper presents a numerical investigation on propagation of hydrocarbon (ethylene-air mixture) detonation in a deformable copper tube. In this study, we deal with interactions of multi-materials, gas and solid. In gas phase, the model consists of the reactive compressible Navier-Stokes equations and one step chemical reaction. Also we use Inviscid Euler equations in solid. In order to the interface tracking and the determination of boundary values, our model handle level-set and ghost fluid method. Through the numerical simulation results, we identify generations of expansion waves and interferences by the wall deformation. In addition, we predict the minimum copper tube thickness that ensures safety under an incident detonation.

  • PDF

3D numerical modeling of impact wave induced by landslide using a multiphase flow model (다상흐름 모형을 이용한 산사태 유발 수면충격파 3차원 수치모의)

  • Kim, Byungjoo;Paik, Joongcheol
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.11
    • /
    • pp.943-953
    • /
    • 2021
  • The propagation of impact wave induced by landslide and debris flow occurred on the slope of lake, reservoir and bays is a three-dimensional natural phenomenon associated with strong interaction of debris flow and water flow in complex geometrical environments. We carried out 3D numerical modeling of such impact wave in a bay using a multiphase turbulence flow model and a rheology model for non-Newtonian debris flow. Numerical results are compared with previous experimental result to evaluate the performance of present numerical approach. The results underscore that the reasonable predictions of both thickness and speed of debris flow head penetrating below the water surface are crucial to accurately reproduce the maximum peak height and free surface profiles of impact wave. Two predictions computed using different initial debris flow thicknesses become different from the instant when the peaks of impact waves fall due to the gravity. Numerical modeling using relatively thick initial debris flow thickness appears to well reproduce the water surface profile of impact wave propagating across the bay as well as wave run-up on the opposite slope. The results show that the maximum run-up height on the opposite slope is not sensitive to the initial thickness of debris flows of same total volume. Meanwhile, appropriate rheology model for debris flow consisting of inviscid particle only should be employed to more accurately reproduce the debris flow propagating along the channel bottom.