• Title/Summary/Keyword: 다목적 유전알고리즘

Search Result 33, Processing Time 0.015 seconds

Shape Optimization of Internally Finned Tube with Helix Angle (나선형 핀이 내부에 부착된 관의 형상최적화)

  • Kim, Yang-Hyun;Ha, Ok-Nam;Lee, Ju-Hee;Park, Kyoung-Woo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.7
    • /
    • pp.500-511
    • /
    • 2007
  • The Optimal solutions of the design variables in internally finned tubes have been obtained for three-dimensional periodically fully developed turbulent flow and heat transfer. For a trapezoidal fin profile, performances of the heat exchanger are determined by considering the heat transfer rate and pressure drop, simultaneously, that are interdependent quantities. Therefore, Pareto frontier sets of a heat exchanger can be acquired by integrating CFD and a multi-objective optimization technique. The optimal values of fin widths $(d_1,\;d_2)$, fin height(h) and helix angle$(\gamma)$ are numerical1y obtained by minimizing the pressure loss and maximizing the heat transfer rate within ranges of $d_1=0.5\sim1.5mm$, $d_2=0.5\sim1.5mm$, $h=0.5\sim1.5mm$, and $\gamma=0\sim20^{\circ}$. For this, a general CFD code and a global genetic algorithm(GA) are used. The Pareto sets of the optimal solutions can be acquired after $30^{th}$ generation.

Modeling of AA5052 Sheet Incremental Sheet Forming Process Using RSM-BPNN and Multi-optimization Using Genetic Algorithms (반응표면법-역전파신경망을 이용한 AA5052 판재 점진성형 공정변수 모델링 및 유전 알고리즘을 이용한 다목적 최적화)

  • Oh, S.H.;Xiao, X.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.30 no.3
    • /
    • pp.125-133
    • /
    • 2021
  • In this study, response surface method (RSM), back propagation neural network (BPNN), and genetic algorithm (GA) were used for modeling and multi-objective optimization of the parameters of AA5052-H32 in incremental sheet forming (ISF). The goal of optimization is to determine the maximum forming angle and minimum surface roughness, while varying the production process parameters, such as tool diameter, tool spindle speed, step depth, and tool feed rate. A Box-Behnken experimental design (BBD) was used to develop an RSM model and BPNN model to model the variations in the forming angle and surface roughness based on variations in process parameters. Subsequently, the RSM model was used as the fitness function for multi-objective optimization of the ISF process the GA. The results showed that RSM and BPNN can be effectively used to control the forming angle and surface roughness. The optimized Pareto front produced by the GA can be utilized as a rational design guide for practical applications of AA5052 in the ISF process

Design of Truss Structures with Real-World Cost Functions Using the Clustering Technique (클러스터링 기법을 이용한 실 경비함수를 가진 트러스 구조물의 설계)

  • Choi, Byoung Han;Lee, Gyu Won
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.2
    • /
    • pp.213-223
    • /
    • 2006
  • Conventional truss optimization approaches, while often sophisticated and computationally intensive, have been applied to simple, minimum weight-cost models. These approaches do not perform well when applied to real-world trusses, which have costmodels that are complex and which often involve multiple objectives. Thus, this paper describes the optimization strategies that a clustering technique, which identifies members that are likely to have the same product type, uses for the optimal design of truss structures with real- world cost functions that consider the costs on the weight of the truss, the number of products in the design, the number of joints in the structures, and the costs required in the site.At first, the clustering technique is applied to identify the members and to generate a proper initial solution. A simple taboo search technique is then used, which attempts to generate the optimal solution by starting with the solution from the previous technique. For example, the proposed approach is a plied to a typical problem and to a problem similar to relative performances. The results show that this algorithm generates not only better-quality solutions but also more efficient ones