• Title/Summary/Keyword: 다목적 여과저류지

Search Result 3, Processing Time 0.02 seconds

A Proposition for the Removal of Algae and Phosphorus from River Water Using Multi-Purpose filtration pond (다목적 여과저류지를 이용한 하천수의 조류와 인 제거방안 제안)

  • Choi, Hong-Gyu;Jeong, Il-Hwa;Bae, Gha-Ram;Park, Jae-Young;Lee, Jong-Jin;Kim, Yong-Woon;Jung, Kwan-Sue;Kim, Seung-Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.7
    • /
    • pp.525-531
    • /
    • 2013
  • In an effort to find a solution to the eutrophication of major Korean rivers, a method to utilize multi-purpose filtration pond was investigated. As literature showed that oyster shell is known to be the most adequate for the removal of dissolved phosphorus in Korean rivers, batch and column experiments were performed using oyster shell as an adsorbent in this study. The results of the batch experiment showed that the removal of dissolved phosphorus from river water through adsorption as a way of preventing algal growth was not practical. The results obtained from the column experiment, however, suggested that oyster shell may be utilized as an adsorbent under limited conditions. Based on the results of the experiments a methodology was proposed to remove algae from river water through the use of multi-purpose filtration pond. This method involves mechanically removing the accumulated algae cake from the surface of the artificial stream in the pond towards the condensing part located at the lower reach of the stream, where particles gather before the final removal. In addition, employment of oyster shell as an adsorbent in the condensing part allows prevention of phosphorus released from the dead algae re-entering the river water.

An Experimental Study on the Production Rate and Contaminant Removal of Filtrate in Multi-purpose Filtration Pond (다목적 여과저류지에서 여과수의 산출율과 수질개선도에 관한 실험연구)

  • Jeong, Jae-Min;Choi, Hong-Gyu;Jung, Kwan-Sue;Kim, Seung-Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.7
    • /
    • pp.518-524
    • /
    • 2013
  • A pilot-scale test-bed was operated employing three soils with different grain sizes dredged from the Nakdong River to obtain the design and operation parameters of the multi-purpose filtration pond, such as the filtrate productivity of the filter sand, the appropriate removal period of the surface clogging and the contaminant removal efficiency. The cross-flow velocities were applied stepwise ranging from 0 to 40 cm/sec in order to simulate the various velocities in the artificial stream of the pond. Results showed that a filtrate production rate of 5~3 $m^3/m^2-day$ was maintained by removing the surface clogging every 7 to 13 days and that the filtrate quality was not affected by the factors of the filtrate production rate, the grain size of the filter sand and the cross-flow velocity. Results also showed that most of the removal occurred within 50 cm of the top soil and that the removal efficiencies with the filtration distance of 2.4 m were 80~95% for turbidity, 20~30% for COD, 75~90% for BOD, 5~20% for total nitrogen and 20~60% for total phosphorus, which suggested that particulate matters had a high removal efficiency.

A Study on the Design of Artificial Stream for Riverbed Filtration in Multi-purpose Filtration Pond (다목적 여과저류지에서의 하상여과용 인공하천 설계연구)

  • Sohn, Dong-Hoon;Park, Jae-Young;Kim, Seung-Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.7
    • /
    • pp.536-543
    • /
    • 2011
  • In order to find the best design of artificial stream for the riverbed filtration in multi-purpose filtration pond, a mathematical model was developed employing the energy line and the Manning's formula and was analyzed by the Euler's technique. Various design factors were investigated through scenario analyses of the artificial stream using the model. Results showed that the appropriate slope of the stream bottom was 2/10,000 and the appropriate infiltration rate at the streambed was $2.5m^3/m^2-day$ for the pond with the area of 100 ha, and that the Manning's roughness coefficient in this case was expected to be about 0.026 and the maximum water-depth was less than 1m. It was also shown that the longer the artificial stream the more advantageous it became for the riverbed filtration. Furthermore, results showed that it was not an efficient way to prevent clogging of the streambed by increasing the flow velocity of the stream and that the performance was higher near a weir with a large head drop.