• Title/Summary/Keyword: 다목적실용위성(KOMPSAT)

Search Result 229, Processing Time 0.028 seconds

Standardization of High-resolution Satellite Image data (고해상도 위성 영상자료 표준화 동향)

  • Lee, Dong-Han;Seo, Doo-Chun;Lim, Hyo-Suk
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.6 no.2
    • /
    • pp.31-39
    • /
    • 2008
  • In this paper, the definition and the requirement from Users of standardization of high resolution satellite image data will be presented. If Users do not use the satellite image data, the satellite will be useless thing though it has been developed and operated now. The standardization of the satellite image data will make Users use the image data with no problem, so KARI has to do the standardization of it as a space agency that has developed and operated the satellite. For the standardization of it, the technical requirement to develop the satellite, the international standardization for the satellite image data and the requirement from Users will be reflected into the satellite development, and then the format and content of the satellite image data to Users have to be accommodated with the standard format of it. In addition to it, the calibration and validation just make sure of the quality of the satellite image data. For this, KARI has just been doing the standardization of KOMPSAT series in stages.

  • PDF

Tracking and Orbit Determination of International Space Station using Radar (레이더를 이용한 국제우주정거장 추적 및 궤도결정)

  • Yu, Ki-Young;Chung, Dae-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.5
    • /
    • pp.447-454
    • /
    • 2016
  • Increase of space debris makes low earth orbit(LEO) environment more complex day by day and space situation Awareness(SSA) is becoming more important. As an essential part of SSA, space object surveillance and tracking is studied by many countries including America and Europe. And radar system forms the backbone of an space surveillance and tracking. Currently, Korea operates many LEO satellites like KOMPSAT but does not have dedicated radar systems which provide collision surveillance between satellite and space debris. Korea Aerospace Research Institute(KARI) NARO space center operates launch-vehicle tracking radar system in GOHEUNG and JEJU, respectively. In this paper, we describe developing operation concept to track International Space Station(ISS) using NARO radar and results of tracking. Then, we describe ISS orbit determination using radar tracking data. Lastly, orbit determination result is compares with TLE for analyzing effectiveness of orbit determination.

Thermal Response Analysis of Satellite Propulsion Tank with Thermostat Location Variation (써모스탯 위치변화에 대한 인공위성 추진제 탱크의 열적 반응 해석)

  • Lee, Kyun-Ho;Han, Cho-Young;Choi, Joon-Min;Moon, Hong-Youl
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.7
    • /
    • pp.126-132
    • /
    • 2004
  • Thermal control of satellite propellant tank is achieved by patch heaters enabled by thermostat's behavior. It is important to attach the thermostat on the appropriate position of the propellant tank. However its position cannot be given with exact numerics because tank is spherical. In practice, the thermostat position is designated approximately in a relevant drawing approximately, thereby an engineer practices depending on his own experience and intuition. The sensitivity analysis for the position of thermostat is performed such that the influence on the thermal behavior and control of tank is examined quantatively. When assembling tank module, the reasonable performance on the thermal control is believed with possible human errors if the uncertainty in the position of thermostat is not quite large.

Epipolar Image Resampling from Kompsat-3 In-track Stereo Images (아리랑3호 스테레오 영상의 에피폴라 기하 분석 및 영상 리샘플링)

  • Oh, Jae Hong;Seo, Doo Chun;Lee, Chang No
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.6_1
    • /
    • pp.455-461
    • /
    • 2013
  • Kompsat-3 is an optical high-resolution earth observation satellite launched in May 2012. The AEISS sensor of the Korean satellite provides 0.7m panchromatic and 2.8m multi-spectral images with 16.8km swath width from the sun-synchronous near-circular orbit of 685km altitude. Kompsat-3 is more advanced than Kompsat-2 and the improvements include better agility such as in-track stereo acquisition capability. This study investigated the characteristic of the epipolar curves of in-track Kompsat-3 stereo images. To this end we used the RPCs(Rational Polynomial Coefficients) to derive the epipolar curves over the entire image area and found out that the third order polynomial equation is required to model the curves. In addition, we could observe two different groups of curve patterns due to the dual CCDs of AEISS sensor. From the experiment we concluded that the third order polynomial-based RPCs update is required to minimize the sample direction image distortion. Finally we carried out the experiment on the epipolar resampling and the result showed the third order polynomial image transformation produced less than 0.7 pixels level of y-parallax.

LONGITUDINAL AND SEASONAL VARIATIONS OF THE ELECTRON TEMPERATURE AND DENSITY IN THE LOW_LATITUDE TOPSIDE IONOSPHERE OBSERVED BY KOMPSAT-1 (다목적 실용위성 1호로 측정한 저위도 상부 이온층의 전자 온도와 전자 밀도의 경도 및 계절별 변화)

  • Kim, Hee-jun;Park, Sun-Mie;Lee, Jae-Jin;Lee, En-sang;Min, Kyoung-Wook;Han, Won-yong;Nam, Uk-Won;Jin, Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.19 no.2
    • /
    • pp.123-132
    • /
    • 2002
  • The electron density and temperature in the topside ionosphere are observed by the ionosphere Measurement Sensor (IMS) onboard the KOMPSAT-1, which has the sun-synchronous orbit of the altitude of 685 km and the orbital inclination of $98^{\circ}$ with a descending node at 22:50LT. Observations have been analyzed to determine the seasonal variations of the electron density and temperature in the low-latitude region. Only the night-time (22:50LT) behavior on magnetically quiet days (Kp < 4) has been examined. Observations show a strong longitudinal and seasonal variation. Generally, in the dip equator the density increases and the temperature decreases. In equinox the latitudinal distributions of the electron density and temperature are quite symmetric about the dip equator. However, the local maximum of the density and the local minimum of the temperature shift toward the Northern hemisphere in summer solstice but the Southern hemisphere in winter solstice. Such variations are due to the influences of field-aligned plasma transport induced by F region neutral wind. Compared with the IRI95 model, the observed electron density and temperature show significant differences from those predicted by the IRI95 model.

Analysis of Satellite Imagery Information Needs in Korea (국내 위성영상정보 수요 분석)

  • Kim, Kwang-Eun;Kim, Yoon-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • Satellite imagery information have not been fully utilized due to the low R&D investment in remote sensing application though Korea had succeeded in developing series of earth observing satellites during the last decades. However, another series of earth observing satellites such as KOMPSAT 3, 3-A, 5 are going to be launched in the near future. And recent global warming issues stimulate both private and public sectors to make the most of satellite imagery information. Therefore, it is inevitable to promote the utilization of Korean satellite imagery information. In this study, we analyzed the demand and restrictions in exploitation of satellite imagery information in Korea through the online survey and interview. The results showed that the standardization of pre-processing, service of detailed technical information, fast and reliable image data delivery system are mostly required.

Change Detection of Damaged Area and Burn Severity due to Heat Damage from Gangwon Large Fire Area in 2019 (2019년 강원도 대형산불지역의 열해 피해로 인한 피해강도 변화 탐색)

  • Won, Myoungsoo;Jang, Keunchang;Yoon, Sukhee;Lee, HoonTaek
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_2
    • /
    • pp.1083-1093
    • /
    • 2019
  • The purpose of this study is to detect the burned area change by direct burning of tree canopies and post-fire mortality of trees via analyzing satellite imageries from the Korea multi-purpose satellite-2 and -3 (KOMPSAT-2 and -3) for two large-fires over the Goseong-Sokcho and Gangneung-Donghae regions in April 2019. For each case, the burned area was compared between two dates: the day when the fire occurred and 15-18 days after it. As the results, within these two dates, there was no substantial difference in burned area of sites whose severities were marked as "Extreme", but sites with "High" and "Low" severities showed significant differences in burned area between the two dates. These differences were resulted from the lagged post-fire browning of canopies which was detected by images from in-situ observation,satellite, and the unmanned aerial vehicle. The post-fire browning started after 3-4 days and became apparent after 10-15 days. This study offers information about the timing to quantify the burned area by large fire and about the mechanism of post-fire mortality. Also, the findings can support policy makers in planning the restoration of the damaged areas.

A Study on DEM Generation from Kompsat-3 Stereo Images (아리랑 3호 스테레오 위성영상의 DEM 제작 성능 분석)

  • Oh, Jae Hong;Seo, Doo Chun;Lee, Chang No
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.1
    • /
    • pp.19-27
    • /
    • 2014
  • Kompsat-3 is an optical high-resolution earth observation satellite launched in May 2012. In addition to its 0.7m spatial resolution, Kompsat-3 is capable of in-track stereo acquisition enabling quality Digital Elevation Model(DEM) generation. Typical DEM generation procedure requires accurate control points well-distributed over the entire image region. But we often face difficult situations especially when the area of interests is oversea or inaccessible area. One solution to this is to use existing geospatial data even though they only cover a part of the image. This paper aimed to assess accuracy of DEM from Kompsat-3 with different scenarios including no control point, Rational Polynomial Coefficients(RPC) relative adjustment, and RPC adjustment with control points. Experiments were carried out for Kompsat-3 stereo data in USA. We used Digital Orthophoto Quadrangle(DOQ) and Shuttle Radar Topography Mission(SRTM) as control points sources. The generated DEMs are compared to a LiDAR DEM for accuracy assessment. The test results showed that the relative RPC adjustment significantly improved DEM accuracy without any control point. And comparable DEM could be derived from single control point from DOQ and SRTM, showing 7 meters of mean elevation error.

Design and analysis of the new power-stage to modularize solar array regulator of the Korea Multi-Purpose SATellite (다목적 실용위성의 태양전력조절기 모듈화를 위한 새로운 전원단 설계 및 해석)

  • Park, Hee-Sung;Park, Sung-Woo;Jang, Jin-Beak;Jang, Sung-Soo;Lee, Jong-In
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.442-446
    • /
    • 2004
  • KOMPSAT series use software-controlled unregulated bus system in which the main bus is directly connected to a battery and the duty-ratio for PWM switch is controlled by the on-board satellite software. This paper proposes a new power-stage circuit that can be available for modularization of the power regulator which is used at the software-controlled unregulated bus system satellite. And we analyze the proposed power-stage operation according to its operating modes and verify it by performing software simulation and hardware experiment using prototype. We constructs a parallel-module converter which is composed of proposed power-stages and perform experiment to verify modular characteristics of the proposed power-stage. Finally, we verify the usefulness of the proposed power-stage by comparing above results with those of a parallel-module converter made of conventional power-stages.

  • PDF

Change detection algorithm based on amplitude statistical distribution for high resolution SAR image (통계분포에 기반한 고해상도 SAR 영상의 변화탐지 알고리즘 구현 및 적용)

  • Lee, Kiwoong;Kang, Seoli;Kim, Ahleum;Song, Kyungmin;Lee, Wookyung
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.3
    • /
    • pp.227-244
    • /
    • 2015
  • Synthetic Aperture Radar is able to provide images of wide coverage in day, night, and all-weather conditions. Recently, as the SAR image resolution improves up to the sub-meter level, their applications are rapidly expanding accordingly. Especially there is a growing interest in the use of geographic information of high resolution SAR images and the change detection will be one of the most important technique for their applications. In this paper, an automatic threshold tracking and change detection algorithm is proposed applicable to high-resolution SAR images. To detect changes within SAR image, a reference image is generated using log-ratio operator and its amplitude distribution is estimated through K-S test. Assuming SAR image has a non-gaussian amplitude distribution, a generalized thresholding technique is applied using Kittler and Illingworth minimum-error estimation. Also, MoLC parametric estimation method is adopted to improve the algorithm performance on rough ground target. The implemented algorithm is tested and verified on the simulated SAR raw data. Then, it is applied to the spaceborne high-resolution SAR images taken by Cosmo-Skymed and KOMPSAT-5 and the performances are analyzed and compared.