• Title/Summary/Keyword: 다목적설계최적화

Search Result 107, Processing Time 0.031 seconds

Optimal Design of Water Distribution System considering the Uncertainties on the Demands and Roughness Coefficients (수요와 조도계수의 불확실성을 고려한 상수도관망의 최적설계)

  • Jung, Dong-Hwi;Chung, Gun-Hui;Kim, Joong-Hoon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.1
    • /
    • pp.73-80
    • /
    • 2010
  • The optimal design of water distribution system have started with the least cost design of single objective function using fixed hydraulic variables, eg. fixed water demand and pipe roughness. However, more adequate design is accomplished with considering uncertainties laid on water distribution system such as uncertain future water demands, resulting in successful estimation of real network's behaviors. So, many researchers have suggested a variety of approaches to consider uncertainties in water distribution system using uncertainties quantification methods and the optimal design of multi-objective function is also studied. This paper suggests the new approach of a multi-objective optimization seeking the minimum cost and maximum robustness of the network based on two uncertain variables, nodal demands and pipe roughness uncertainties. Total design procedure consists of two folds: least cost design and final optimal design under uncertainties. The uncertainties of demands and roughness are considered with Latin Hypercube sampling technique with beta probability density functions and multi-objective genetic algorithms (MOGA) is used for the optimization process. The suggested approach is tested in a case study of real network named the New York Tunnels and the applicability of new approach is checked. As the computation time passes, we can check that initial populations, one solution of solutions of multi-objective genetic algorithm, spread to lower right section on the solution space and yield Pareto Optimum solutions building Pareto Front.

Impact Performance Optimization of Auto-Sensing Breaker using Multi-objective Function (다목적함수를 이용한 지능형 브레이커의 타격성능 최적화)

  • Lee, Dae-Hee;Noh, Dae-Kyung;Park, Sung-Su;Lee, Geun-Ho;Kang, Young-Ky;Cho, Jae-Sang;Jang, Joo-Sup
    • Journal of the Korea Society for Simulation
    • /
    • v.26 no.4
    • /
    • pp.11-21
    • /
    • 2017
  • This paper discusses the design parameter sensitivity analysis and multi-objective function optimization for improving the impact performance of an auto-sensing breaker based on the analytical model of the same, which secured reliability in a previous research. The study aims to improve both impact power and stability by complementing the existing research that only improved the impact power. The study sequence is as follows: first, the analysis scenarios for the accurate sensitivity analysis and optimization are set up. Second, the sensitivity of the design parameter of the auto-sensing breaker is analyzed, and the variables with high sensitivity are extracted. Third, the extracted variables are used to optimize the multi-objective functions, and the optimized performance is compared with the initial performance to see how the impact performance on the existing auto-sensing breaker has improved. This study is based on domestic technology, and will allow the development of products with a better blowing performance than their existing overseas counterparts.

A Multi-Objective Optimization Framework for Conceptual Design of a Surface-to-Surface Missile System (지대지 유도탄 체계 개념설계를 위한 다목적 최적화 프레임워크)

  • Lee, Jong-Sung;Ahn, Jae-myung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.6
    • /
    • pp.460-467
    • /
    • 2019
  • This paper proposes a multi-objective optimization (MOO) framework for conceptual design of a surface-to-surface missile system. It can generate the set of Pareto optimal system design, which can be used for system trade-off study in a very early stage of the research and development process. The proposed framework consists of four functional modules (an environmental setting module, a variable setting module, a multidisciplinary analysis module and an optimization module) to make the model easy to change, and the concept design process using the framework was able to achieve the purpose of reviewing various designs in the early stage of development. A case study demonstrating the effectiveness of the framework has presented applicability to the system design, and the proposed framework has contributed to presenting a design environment that can ensure reliability and reduce computational time in the conceptual design stage.

Multilevel Multiobjective Optimization for Structures (다단계 다목적함수 최적화를 이용한 구조물의 최적설계)

  • 한상훈;최홍식
    • Computational Structural Engineering
    • /
    • v.7 no.1
    • /
    • pp.117-124
    • /
    • 1994
  • Multi-level Multi-objective optimization(MLMO) for reinforced concrete framed structure is performed, and compared with the results of single-level single-objective optimization. MLMO method allows flexibility to meet the design needs such as deflection and cost of structures using weighting factors. Using Multi-level formulation, the numbers of constraints and variables are reduced at each levels, and the optimization formulation becomes simplified. The force approximation method is used to reflect the variation in design variables between the substructures, and thus coupling is maintained. And the linear approximated constraints and objective function are used to reduce the number of structural analysis in optimization process. It is shown that the developed algorithm with move limit can converge effectively to optimal solution.

  • PDF

Optimal design of nonlinear seismic isolation system by a multi-objective optimization technique integrated with a stochastic linearization method (추계학적 선형화 기법을 접목한 다목적 최적화기법에 의한 비선형 지진격리시스템의 최적설계)

  • Kwag, Shin-Young;Ok, Seung-Yong;Koh, Hyun-Moo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.1-13
    • /
    • 2010
  • This paper proposes an optimal design method for the nonlinear seismic isolated bridge. The probabilities of failure at the pier and the seismic isolator are considered as objective functions for optimal design, and a multi-objective optimization technique is employed to efficiently explore a set of multiple solutions optimizing mutually-conflicting objective functions at the same time. In addition, a stochastic linearization method is incorporated into the multi-objective optimization framework in order to effectively estimate the stochastic responses of the bridge without performing numerous nonlinear time history analyses during the optimization process. As a numerical example to demonstrate the efficiency of the proposed method, the Nam-Han river bridge is taken into account, and the proposed method and the existing life-cycle-cost based design method are both applied for the purpose of comparing their seismic performances. The comparative results demonstrate that the proposed method not only shows better seismic performance but also is more economical than the existing cost-based design method. The proposed method is also proven to guarantee improved performance under variations in seismic intensity, in bandwidth and in the predominant frequency of the seismic event.

Maintenance Planning for Deteriorating Bridge using Preference-based Optimization Method (선호도기반 최적화방법을 이용한 교량의 유지보수계획)

  • Lee, Sun-Young;Koh, Hyun-Moo;Park, Wonsuk;Kim, Hyun-Joong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2A
    • /
    • pp.223-231
    • /
    • 2008
  • This research presents a new maintenance planning method for deteriorating bridges considering simultaneously the minimization of the maintenance cost and maximization of the bridge performance. Optimal maintenance planning is formulated as a multi-objective optimization problem that treats the maintenance cost as well as the bridge performance such as the condition grade of the bridge deck, girder and pier. To effectively address the multi-objective optimization problem and decision making process for the obtained solution set, we apply a genetic algorithm as a numerical searching technique and adopt a preference-based optimization method. A numerical example for a typical 5-span prestressed concrete girder bridge shows that the maintenance cost and the performance of the bridge can be balanced reasonably without severe trade-offs between each objectives.

The Study about the Optimizaion of the low noise axial fan (대형 축류팬 저소음화를 위한 최적설계 연구)

  • 신형기;이수갑;천승현
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.365.1-365
    • /
    • 2002
  • 저소음 팬의 설계는 팬 성능의 저감 없이 이루어져야 한다. 마라서 저소음 팬 설계는 기본적으로 다분야간 설계 최적화 또는 다목적 설계 최적화의 문제이다. 본 연구에서는 이러한 요구를 수행하기 위해 반응면 기법을 저소음 축류 팬 설계에 적용하여 보았다. 또한 이러한 설계 단계에서 필요한 수백가지 시험 결과를 효과적으로 구하기 위해 효율적인 유동 해석 툴과 소음 해석 툴을 개발하여 적용시켰다. (중략)

  • PDF

Capacity Design of Eccentrically Braced Frame Using Multiobjective Optimization Technique (다목적 최적화 기법을 이용한 편심가새골조의 역량설계)

  • Hong, Yun-Su;Yu, Eunjong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.6
    • /
    • pp.419-426
    • /
    • 2020
  • The structural design of the steel eccentrically braced frame (EBF) was developed and analyzed in this study through multiobjective optimization (MOO). For the optimal design, NSGA-II which is one of the genetic algorithms was utilized. The amount of structure and interfloor displacement were selected as the objective functions of the MOO. The constraints include strength ratio and rotation angle of the link, which are required by structural standards and have forms of the penalty function such that the values of the objective functions increase drastically when a condition is violated. The regulations in the code provision for the EBF system are based on the concept of capacity design, that is, only the link members are allowed to yield, whereas the remaining members are intended to withstand the member forces within their elastic ranges. However, although the pareto front obtained from MOO satisfies the regulations in the code provision, the actual nonlinear behavior shows that the plastic deformation is concentrated in the link member of a certain story, resulting in the formation of a soft story, which violates the capacity design concept in the design code. To address this problem, another constraint based on the Eurocode was added to ensure that the maximum values of the shear overstrength factors of all links did not exceed 1.25 times the minimum values. When this constraint was added, it was observed that the resulting pareto front complied with both the design regulations and capacity design concept. Ratios of the link length to beam span ranged from 10% to 14%, which was within the category of shear links. The overall design is dominated by the constraint on the link's overstrength factor ratio. Design characteristics required by the design code, such as interstory drift and member strength ratios, were conservatively compared to the allowable values.

Spacecraft Radiator Design Optimization Approach of Combining Optimization Algorithm with Thermal Analysis (최적화알고리즘과 열해석을 통합한 위성방열판 설계의 최적화 방법에 관한 연구)

  • Kim, Hui-Kyung
    • Aerospace Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.24-29
    • /
    • 2013
  • A spacecraft radiator is a thermal control method to eject internally dissipated heat into the space generated from operation of unit boxes. The efficiency of thermal design may be improved by optimizing radiator design. In this paper, the optimization approach method of node-based radiator design was suggested which is to combine numerical thermal analysis with optimization algorithm. This method has meaning that it can be used practically to implement the spacecraft radiator design regardless of thermal analysis and optimization algorithm software and maintain the same basic concept of an ordinary radiator design approach based on node division of a thermal model. The overall analysis framework with thermal analysis and optimization algorithm would be presented.

Case of Dynamic Performance Optimization for Hydraulic Drifter (유압 드리프터의 동적성능 최적화 사례)

  • Noh, Dae-kyung;Lee, Dae-Hee;Jang, Joo-Sup;Yun, Joo-Seop;Lee, Dong-Won
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.2
    • /
    • pp.35-48
    • /
    • 2019
  • Domestic hydraulic drifters till now have been developed by benchmarking products from overseas leading companies. However, they do not have excellent impact performance as they are not suitable for characteristics (large flow rate and low pressure) of Korean hydraulic drill power pack, and therefore, research on the optimum design has not made much headway. This study performs multi-objective function optimization for hydraulic drifters whose capacity has been redesigned to deal with the large flow rate, and also with the help of this function, it aims to improve impact power and reduce supply and surge pressure. A summary of the research study is as follows: First, we set goals for improving impact power, supply pressure, and surge pressure, and then perform multi-objective function optimization on them. After that, we secure the reliability of the optimized analytical model by comparing the test results of the prototype built by the optimized design with the analysis results of the analytical model. This study used SimulationX, that is the hydraulic system analysis software, and EasyDesign, which is a multi-objective function optimization program. Through this research, we have achieved the results that satisfy the goal of developing high power drifters suitable for Korean type hydraulic drills.