• Title/Summary/Keyword: 다단 열교환기

Search Result 8, Processing Time 0.027 seconds

A Study on the Heat Recovery from Boiler Exhaust Gas with Multi-stage Water-fluidized-bed Heat Exchanger (다단 물유동층 열교환기에 의한 보일러 배가스의 폐열 회수 성능에 관한 연구)

  • Kim, Dae-Gi;Park, Sang-Il;Kim, Han-Deok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.12
    • /
    • pp.1776-1783
    • /
    • 2001
  • Heat recovery from boiler exhaust gas with multi-stage water-fluidized-bed heat exchanger is analyzed in this study. The recovered energy here is not only sensible heat but also latent heat contained in the exhaust gas. In this system direct contact heat transfer occurs while exhaust gas passes through water bed and the thermal energy recovered this way is again delivered to the water circulating through heat exchanging pipes within the bed. Thus the thermal energy of exhaust gas can be recovered as a clean hot water. A computer program developed in this study can predict the heat transfer performance of the system. The results of experiments performed in this study agree well with the calculated ones. The heat and mass transfer coefficients can be fecund through these experiments. The performance increases as the number of stage increases. However at large number of stages the increasing rate becomes very low.

건식 $CO_2$ 포집공정 효율 향상을 위한 열교환형 유동층 반응기 열설계

  • Jo, Hyeong-Hui
    • Journal of the KSME
    • /
    • v.53 no.6
    • /
    • pp.46-50
    • /
    • 2013
  • 유동층기술은 물리반응 공정, 화학반응 공정, 에너지 변환공정 등 다양한 산업 분야에 오랫동안 적용되어 왔다. 이 글에서는 여러 산업분야 중 최근 환경 분야에 적용된 유동층 반응기 설계기술, 특히 건식흡수제를 이용한 다단 $CO_2$ 포집공정용 유동층 반응기 설계를 위한 유동층 열교환기 설계 기술에 대해 소개 하고자 한다.

  • PDF

Development of a Multi-step Stamping Process for the Effective Fabrication of a Thin Sheet for High Aspect Ratio Corrugated Structures (고세장비 연속주름을 갖는 박판구조물 제작을 위한 다단성형공정 개발)

  • Choi, Sung-Woo;Park, Sang-Hu;Jeong, Ho-Seung;Min, June-Kee;Jeong, Jae-Hun;Cho, Jong-Rae;Kim, Hyun-June;Willians, Paul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.2
    • /
    • pp.219-226
    • /
    • 2010
  • The stamping process is widely used in fabricating various sheet-parts for vehicle, airplane, and electronic devices due to its low processing cost and high productivity. Recently the use of thin sheets with corrugated structures has rapidly increased for the production of energy devices, e.g., heat exchangers and fuel cells. However, it is very difficult to make corrugated structures directly in the stamping process due to their geometrical complexity. To solve this problem, this paper proposes a multi-step stamping process with a combined heat treatment process: a sequence of the first stamping, heat treatment, and second stamping. By multi-stamping, we obtained successful results in fabricating very thin corrugated structures with thicknesses of $100{\mu}m$; these are applicable as part of a plate-type heat exchanger.

Start-up Strategy of Multi-Stage Burner for Methanol Fuel Reforming Plant (메탄올 연료 개질 플랜트의 다단연소기 시동 전략)

  • JI, HYUNJIN;BAIK, KYUNGDON;YANG, SUNGHO;JUNG, SEUNGKYO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.3
    • /
    • pp.201-208
    • /
    • 2019
  • Recently, a fuel reforming plant for supplying high purity hydrogen is being applied to submarines. Since steam reforming is an endothermic reaction, it is necessary to continuously supply heat to the reactor. A fuel reforming plant for a submarine needs a multi-stage burner (MSB) to acquire heat and convert the combustion gas to $CO_2+H_2O$. The MSB has problems that the combustion imbalance occurs during start-up due to the temperature restriction of the combustion gas. This problems can be solved by burning $H_2O$ together with fuel and $O_2$. In this study, the simulation results of MSB were analyzed to determine the optimum flow rate of $H_2O$ supplied to the 6-stage burner. When the flow rate of $H_2O$ was low, combustion was concentrated on the burner#6 in comparison with the burner#1-#5. This combustion concentration improved as the supply amount of $H_2O$ increased. As a results, it was necessary to supply at least 4.9 kmol/h of $H_2O$ (per 1 kmol/h of fuel) to burner#1 in order to maintain the combustion gas temperature of each stage at $750^{\circ}C$ and to convert the final stage burner gas composition to $CO_2+H_2O$.

Study on the performance of a heat pump system with serial dehumidification function (직렬 제습방식 열펌프 시스템의 성능특성에 관한 연구)

  • Ko, Wonbin;Ko, Ji-Woon;Park, Youn Cheol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.6
    • /
    • pp.609-614
    • /
    • 2014
  • In this research, results of measuring temperature and relative humidity of underground-air-heat in Jeju showed $15{\sim}18^{\circ}C$ and 70~80% each which are somewhat high compare to other regions. So the Multi-effect dehumidifying and heating Heat Pump system which has merged functions of dehumidification and heating is made to solve this problem mentioned previously. When the suction air was $15^{\circ}C$ with 60% humidity, the outcome was 1.70 on $COP_h$ and 1.797(kg/h) on total amount of dehumidification, and also showed 1.87 $COP_h$ with 1.87 total amount of dehumidification under the condition of $20^{\circ}C$ and 80% humidity of suction air. Furthermore, $COP_h$ showed increased number which is 1.87 and also total amount of dehumidification increased which was 3.269(kg/h). The highest COP can be achieved at $17^{\circ}C$ and 70% relative humidity condition.

A System Simulation Model of Proton Exchange Membrane Fuel Cell for Residential Power Generation for Thermal Management Study (가정용 연료전지 시스템의 열관리 해석을 위한 시스템 운전 모델 개발)

  • Yu, Sang-Seok;Lee, Young-Duk;Ahn, Kook-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.1
    • /
    • pp.19-26
    • /
    • 2010
  • A PEMFC(proton exchange membrane fuel cell) is a good candidate for residential power generation to be coped with the shortage of fossil fuel and green house gas emission. The attractive benefit of the PEMFC is to produce electric power as well as hot water for home usage. The thermal management of PEMFC for RPG is to utilize the heat of PEMFC so that the PEMFC can be operated at its optimal efficiency. In this study, thermal management system of PEMFC stack is modeled to understand the dynamic response during load change. The thermal management system of PEMFC for RPGFC is composed of two cooling circuits, one for controling the fuel cell temperature and the other for heating up the water for home usage. The different operating strategy is applied for each cooling circuit considering the duty of those two circuits. Even though the capacity of PEMFC system (1kW) is enough to supply hot domestic water for residence, heat-up of reservior takes some hours. Therefore, in this study, time schedule of the simulation reflects the heat-up process. Dynamic responses and operating strategies of the PEMFC system are investigated during load changes.

The Study of Energy Conversion in a 2 Ton/day Waste-wood Fixed Bed Gasifier (2톤/일 고정층 가스화기를 이용한 폐목재의 에너지 전환 연구)

  • Lee, See Hoon;Son, Young Il;Ko, Chang Bok;Choi, Kyung Bin;Kim, Jae Ho
    • Applied Chemistry for Engineering
    • /
    • v.20 no.4
    • /
    • pp.391-395
    • /
    • 2009
  • For the conversion of domestic waste-wood into energy, a fixed bed gasifier ($0.9 m{\times}2.4 m$) having the capacity of 2 ton/day was designed and constructed. The dual knife valve was used to feed waste-wood of which size was 3~5 cm and a rotary stoker system was installed in the bottom of gasifier. The pilot gasification system consisted of feeding system, fixed bed gasifier, gravity fine particle collector, heat exchanger for syngas cooling, ID fan, and cooling tower. The operation temperatures of gasifier were $700{\sim}1000^{\circ}C$ and the concentrations of syngas were CO: 25~40 vol%, $H_2$: 7~12 vol%, $CH_4$: 2~4 vol%, $CO_2$: 12~24 vol%. The calorific value of syngas was $1100{\sim}1500kcal/Nm^3$ and was enough to be applied in the industrial combustor. Also the gas engine was operated by using syngas from biomass gasifier and produced 1~4 kW of power.

Design and Construction of a Bottoming Organic Rankine Cycle System for an Natural Gas Engine (가스엔진용 유기랭킨사이클의 설계 및 제작)

  • Lee, Minseog;Baek, Seungdong;Sung, Taehong;Kim, Hyun Dong;Chae, Jung Min;Cho, Young Ah;Kim, Hyoungtae;Kim, Kyung Chun
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.6
    • /
    • pp.65-72
    • /
    • 2016
  • ORC system was designed and constructed for utilizing the heat of the exhaust gas and coolant released from the gas engine which was modified to use natural gas as a fuel. In this paper the components of the ORC system were designed and manufactured based on measured data of the gas engine. The components are composed of two plate heat exchanger, the 5kW-class expander and multi stage centrifugal pump. The thermodynamic performance of the ORC system was analyzed by using the electric heater. Also, the developed ORC system was implemented to modified natural gas engine. Two gas engines were used to supply heat to the ORC system. As a result of test bench, when the heat source temperature is $110^{\circ}C$ expander shaft power, the pressure ratio and cycle efficiency is 5.22kW, 7.41, 9.09%. As a result of field test, when the heat source temperature is $86^{\circ}C$ expander shaft power, the pressure ratio and cycle efficiency is 2kW, 3.75, 6.45%.