• 제목/요약/키워드: 다단포머단조

검색결과 3건 처리시간 0.017초

컴퓨터를 이용한 냉간포머단조 공정설계 (Computer Aided Process Design in Cold-Former Forging)

  • 임창수;서성렬;이민철;김주현;전만수
    • 한국정밀공학회지
    • /
    • 제15권10호
    • /
    • pp.51-57
    • /
    • 1998
  • In this paper, a computer aided process design technique, utilizing a forging simulator and a commercial CAD software, is presented together with its related design system for cold-former forging of ball joints. The forging sequence design is carried out through user-computer interaction by using design templates, design database, experience or knowledge-based rules and some basic laws found in the literature. The forging simulation technique is used to verify the process design. The detail designs including die set drawings and die manufacturing information are automatically generated. It has been shown that the engineer ing and design productivity is much improved by the presented approach in the practical standpoint of process design engineers.

  • PDF

준축대칭 제품 냉간단조용 전문가시스템 개발 - 다단포머 금형의 수평분할 밀 최적설계 - (Development of Expert System for Cold Forging of Axisymmetric Product - Horizontal Split and Optimal Design of Multi-former Die Set -)

  • 박철우;조천수;김철;김영호;최재찬
    • 한국정밀공학회지
    • /
    • 제21권9호
    • /
    • pp.32-40
    • /
    • 2004
  • This paper deals with an automated computer-aided process planning and die design system by which designer can determine operation sequences even if they have a little experience in process planning and die design for axisymmetric products. An attempt is made to link programs incorporating a number of expert design rules with the process variables obtained by commercial FEM softwares, DEFORM and ANSYS, to form a useful package. The system is composed of four main modules. The process planning and the die design modules consider several factors, such as the complexities of preform geometry, punch and die profiles, specifications of available multi former, and the availability of standard parts. They can provide a flexible process based on either the reduction in the number of forming sequences by combining the possible two processes in sequence, or the reduction of deviation of the distribution on the level of the required forming loads by controlling the forming ratios. Especially in die design module an optimal design technique and horizontal split die were investigated for determining appropriate dimensions of components of multi-former die set. It is constructed that the proposed method can be beneficial for improving the tool life of die set at practice.