• Title/Summary/Keyword: 다단댐퍼

Search Result 3, Processing Time 0.016 seconds

Initial Design of A Suspension Damper for Truck Driver's Seat (트럭 운전석 현가 댐퍼의 초기설계)

  • Baek, W.K.;Oh, S.W.
    • Journal of Power System Engineering
    • /
    • v.3 no.3
    • /
    • pp.91-96
    • /
    • 1999
  • This study is about the design and analysis ot a suspension damper for truck driver's seat to improve the ride comfort. Trucks are usually subjected to hostile driving environments. Therefore, many truck driver's seat have suspension seats to isolate the vibration from the cab floor panel. Because the vehicle suspension system can reduce the primary vibration from the ground, only low frequency vibration can be transmitted to the driver's seat. But, this low frequency vibration can be harmful to the driver. The seat damper is very critical element to improve the ride comfort for the driver. In this study, a four-stage damper is designed and analyzed for the vibration capability. The damping coefficient of this damper can lie manually controlled in response to the road and driving environment.

  • PDF

Electro-Magnetic Field Analysis for Optimal design of Magneto-Rheological Fluid Damper Core (자기점서유체 댐퍼 코어의 최적화 설계를 위한 전자기장 해석)

  • Song, June-Han;Son, Sung-Wan;Chun, Chong-Keun;Kwon, Young-Chul;Ma, Yang-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.6
    • /
    • pp.1511-1517
    • /
    • 2008
  • The magneto-rheological fluid expresses different cohesiveness according to the strength of the external electric current. The magneto-rheological fluid damper, which uses such characteristics of the fluid, generates shear force due to the fluid's cohesiveness. The core can be said to determine the magneto-rheological fluid damper's performance. This study uses the finite element analysis to compare the performance of different electromagnetic forces, which are affected by the shapes of the coil, and thus to find the optimum design for the core. In addition, as a step to construct a high-efficient damper, we suggest a type of damper that can control multiple coils and compares the performance of this damper and that of the standard damper by comparing the performance of their electro-magnetic fields.

A Robust Semi-active Suspension Control Law (반능동 현가시스템의 Robust 제어 법칙)

  • Yi, K.S.;Suh, M.W.;Oh, T.I.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.6
    • /
    • pp.117-126
    • /
    • 1994
  • This paper deals with a robust semi-active control algorithm which is applicable to a semi-active suspension with a multi-state damper. Since the controllable damping rates are discrete in case of a multi-state semi-active damper, the desired damping rate can not be produced exactly even if force-velocity relations of a multi-state semi-active damper is completely known. In addition, damping characteristics of the semi-active dampers are different from damper to damper. A robust nonlinear control law based on sliding control is developed. The main objective of the proposed control strategies is to improve ride quality by tracking the desired active force with a multi-state damper of which the force-velocity relations are "not" completely known. The performance of th proposed semi-active control law is numerically compared to those of the control law based on a bilinear model and a passive suspension. The proposed control algorithm is robust to nonlinear characteristics and uncertainty of the force-Velocity relations of multi-state dampers.

  • PDF