• 제목/요약/키워드: 다국어 BERT

검색결과 8건 처리시간 0.02초

다국어 정보 검색을 위한 적대적 언어 적응을 활용한 ColBERT (ColBERT with Adversarial Language Adaptation for Multilingual Information Retrieval)

  • 김종휘;김윤수;이근배
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.239-244
    • /
    • 2023
  • 신경망 기반의 다국어 및 교차 언어 정보 검색 모델은 타겟 언어로 된 학습 데이터가 필요하지만, 이는 고자원 언어에 치중되어있다. 본 논문에서는 이를 해결하기 위해 영어 학습 데이터와 한국어-영어 병렬 말뭉치만을 이용한 효과적인 다국어 정보 검색 모델 학습 방법을 제안한다. 언어 예측 태스크와 경사 반전 계층을 활용하여 인코더가 언어에 구애 받지 않는 벡터 표현을 생성하도록 학습 방법을 고안하였고, 이를 한국어가 포함된 다국어 정보 검색 벤치마크에 대해 실험하였다. 본 실험 결과 제안 방법이 다국어 사전학습 모델과 영어 데이터만을 이용한 베이스라인보다 높은 성능을 보임을 실험적으로 확인하였다. 또한 교차 언어 정보 검색 실험을 통해 현재 검색 모델이 언어 편향성을 가지고 있으며, 성능에 직접적인 영향을 미치는 것을 보였다.

  • PDF

KcBERT를 활용한 한국어 악플 탐지 분석 및 개선방안 연구 (Analyzing Korean hate-speech detection using KcBERT)

  • 정세영;김병진;김대식;김우영;김태용;윤현수;김우주
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.577-580
    • /
    • 2023
  • 악성댓글은 인터넷상에서 정서적, 심리적 피해를 주는 문제로 인식되어 왔다. 본 연구는 한국어 악성댓글 탐지 분석을 위해 KcBERT 및 다양한 모델을 활용하여 성능을 비교하였다. 또한, 공개된 한국어 악성댓글 데이터가 부족한 것을 해소하기 위해 기계 번역을 이용하고, 다국어 언어 모델(Multilingual Model) mBERT를 활용하였다. 다양한 실험을 통해 KcBERT를 미세 조정한 모델의 정확도 및 F1-score가 타 모델에 비해 의미 있는 결과임을 확인할 수 있었다.

  • PDF

A Multi-task Self-attention Model Using Pre-trained Language Models on Universal Dependency Annotations

  • Kim, Euhee
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권11호
    • /
    • pp.39-46
    • /
    • 2022
  • 본 논문에서는 UD Korean Kaist v2.3 코퍼스를 이용하여 범용 품사 태깅, 표제어추출 그리고 의존 구문분석을 동시에 예측할 수 있는 보편적 다중 작업 모델을 제안하였다. 제안 모델은 사전학습 언어모델인 다국어 BERT (Multilingual BERT)와 한국어 BERT (KR-BERT와 KoBERT)을 대상으로 추가학습 (fine-tuning)을 수행하여 BERT 모델의 자가-집중 (self-attention) 기법과 그래프 기반 Biaffine attention 기법을 적용하여 제안 모델의 성능을 비교 분석하였다.

KcBERT: 한국어 댓글로 학습한 BERT (KcBERT: Korean comments BERT)

  • 이준범
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2020년도 제32회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.437-440
    • /
    • 2020
  • 최근 자연어 처리에서는 사전 학습과 전이 학습을 통하여 다양한 과제에 높은 성능 향상을 성취하고 있다. 사전 학습의 대표적 모델로 구글의 BERT가 있으며, 구글에서 제공한 다국어 모델을 포함해 한국의 여러 연구기관과 기업에서 한국어 데이터셋으로 학습한 BERT 모델을 제공하고 있다. 하지만 이런 BERT 모델들은 사전 학습에 사용한 말뭉치의 특성에 따라 이후 전이 학습에서의 성능 차이가 발생한다. 본 연구에서는 소셜미디어에서 나타나는 구어체와 신조어, 특수문자, 이모지 등 일반 사용자들의 문장에 보다 유연하게 대응할 수 있는 한국어 뉴스 댓글 데이터를 통해 학습한 KcBERT를 소개한다. 본 모델은 최소한의 데이터 정제 이후 BERT WordPiece 토크나이저를 학습하고, BERT Base 모델과 BERT Large 모델을 모두 학습하였다. 또한, 학습된 모델을 HuggingFace Model Hub에 공개하였다. KcBERT를 기반으로 전이 학습을 통해 한국어 데이터셋에 적용한 성능을 비교한 결과, 한국어 영화 리뷰 코퍼스(NSMC)에서 최고 성능의 스코어를 얻을 수 있었으며, 여타 데이터셋에서는 기존 한국어 BERT 모델과 비슷한 수준의 성능을 보였다.

  • PDF

다국어 사용자 후기에 대한 속성기반 감성분석 연구 (A study on the aspect-based sentiment analysis of multilingual customer reviews)

  • 지성영;이시윤;최대우;강기훈
    • 응용통계연구
    • /
    • 제36권6호
    • /
    • pp.515-528
    • /
    • 2023
  • 전자상거래 시장의 성장과 더불어 소비자들은 상품 및 서비스 구매 시 다른 사용자가 작성한 후기 정보에 기반하여 구매 의사를 결정하게 되며 이러한 후기를 효과적으로 분석하기 위한 연구가 활발히 이루어지고 있다. 특히, 사용자 후기에 대해 단순 긍/부정으로 감성분석하는 것이 아니라 다면적으로 분석하는 속성기반 감성분석 방법이 주목받고 있다. 속성기반 감성분석을 위한 다양한 방법론 중 최신 자연어 처리 기술인 트랜스포머 계열 모델을 활용한 분석 방법이 있다. 본 논문에서는 최신 자연어 처리 기술 모델에 두 가지 실제 데이터를 활용하여 다국어 사용자 후기에 대한 속성기반 감성분석을 진행하였다. 공개된 데이터 셋인 SemEval 2016의 Restaurant 데이터와 실제 화장품 도메인에서 작성된 다국어 사용자 후기 데이터를 활용하여 속성기반 감성분석을 위한 트랜스포머 계열 모델의 성능을 비교하였고 성능 향상을 위한 다양한 방법론도 적용하였다. 다국어 데이터를 활용한 모델을 통해 언어별로 별도의 모델을 구축하지 않고 한가지 모델로 다국어를 분석할 수 있다는 점에서 효용 가치가 클 것으로 예상된다.

BERT 언어 모델을 이용한 감정 분석 시스템 (Sentiment Analysis System by Using BERT Language Model)

  • 김택현;조단비;이현영;원혜진;강승식
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 추계학술발표대회
    • /
    • pp.975-977
    • /
    • 2020
  • 감정 분석은 문서의 주관적인 감정, 의견, 기분을 파악하기 위한 방법으로 소셜 미디어, 온라인 리뷰 등 다양한 분야에서 활용된다. 문서 내 텍스트가 나타내는 단어와 문맥을 기반으로 감정 수치를 계산하여 긍정 또는 부정 감정을 결정한다. 2015년에 구축된 네이버 영화평 데이터 20 만개에 12 만개를 추가 구축하여 감정 분석 연구를 진행하였으며 언어 모델로는 최근 자연어처리 분야에서 높은 성능을 보여주는 BERT 모델을 이용하였다. 감정 분석 기법으로는 LSTM(Long Short-Term Memory) 등 기존의 기계학습 기법과 구글의 다국어 BERT 모델, 그리고 KoBERT 모델을 이용하여 감정 분석의 성능을 비교하였으며, KoBERT 모델이 89.90%로 가장 높은 성능을 보여주었다.

한글 텍스트 감정 이진 분류 모델 생성을 위한 미세 조정과 전이학습에 관한 연구 (A Study on Fine-Tuning and Transfer Learning to Construct Binary Sentiment Classification Model in Korean Text)

  • 김종수
    • 한국산업정보학회논문지
    • /
    • 제28권5호
    • /
    • pp.15-30
    • /
    • 2023
  • 근래에 트랜스포머(Transformer) 구조를 기초로 하는 ChatGPT와 같은 생성모델이 크게 주목받고 있다. 트랜스포머는 다양한 신경망 모델에 응용되는데, 구글의 BERT(bidirectional encoder representations from Transformers) 문장생성 모델에도 사용된다. 본 논문에서는, 한글로 작성된 영화 리뷰에 대한 댓글이 긍정적인지 부정적인지를 판단하는 텍스트 이진 분류모델을 생성하기 위해서, 사전 학습되어 공개된 BERT 다국어 문장생성 모델을 미세조정(fine tuning)한 후, 새로운 한국어 학습 데이터셋을 사용하여 전이학습(transfer learning) 시키는 방법을 제안한다. 이를 위해서 104 개 언어, 12개 레이어, 768개 hidden과 12개의 집중(attention) 헤드 수, 110M 개의 파라미터를 사용하여 사전 학습된 BERT-Base 다국어 문장생성 모델을 사용했다. 영화 댓글을 긍정 또는 부정 분류하는 모델로 변경하기 위해, 사전 학습된 BERT-Base 모델의 입력 레이어와 출력 레이어를 미세 조정한 결과, 178M개의 파라미터를 가지는 새로운 모델이 생성되었다. 미세 조정된 모델에 입력되는 단어의 최대 개수 128, batch_size 16, 학습 횟수 5회로 설정하고, 10,000건의 학습 데이터셋과 5,000건의 테스트 데이터셋을 사용하여 전이 학습시킨 결과, 정확도 0.9582, 손실 0.1177, F1 점수 0.81인 문장 감정 이진 분류모델이 생성되었다. 데이터셋을 5배 늘려서 전이 학습시킨 결과, 정확도 0.9562, 손실 0.1202, F1 점수 0.86인 모델을 얻었다.

BERT와 지식 그래프를 이용한 한국어 문맥 정보 추출 시스템 (Korean Contextual Information Extraction System using BERT and Knowledge Graph)

  • 유소엽;정옥란
    • 인터넷정보학회논문지
    • /
    • 제21권3호
    • /
    • pp.123-131
    • /
    • 2020
  • 인공지능 기술의 비약적 발전과 함께 사람의 언어를 다루는 자연어 처리 분야 역시 활발하게 연구가 진행되고 있다. 특히 최근에는 구글에서 공개한 언어 모델인 BERT는 대량의 코퍼스를 활용해 미리 학습시킨 모델을 제공함으로써 자연어 처리의 여러 분야에서 좋은 성능을 보이고 있다. BERT에서 다국어 모델을 지원하고 있지만 한국어에 바로 적용했을 때는 한계점이 존재하기 때문에 대량의 한국어 코퍼스를 이용해 학습시킨 모델을 사용해야 한다. 또한 텍스트는 어휘, 문법적인 의미만 담고 있는 것이 아니라 전후 관계, 상황과 같은 문맥적인 의미도 담고 있다. 기존의 자연어 처리 분야에서는 어휘나 문법적인 의미를 중심으로 연구가 주로 이루어졌다. 텍스트에 내재되어 있는 문맥 정보의 정확한 파악은 맥락을 이해하는 데에 있어 중요한 역할을 한다. 단어들의 관계를 이용해 연결한 지식그래프는 컴퓨터에게 쉽게 문맥을 학습시킬 수 있는 장점이 있다. 본 논문에서는 한국어 코퍼스를 이용해 사전 학습된 BERT 모델과 지식 그래프를 이용해 한국어 문맥 정보를 추출하는 시스템을 제안하고자 한다. 텍스트에서 중요한 요소가 되는 인물, 관계, 감정, 공간, 시간 정보를 추출할 수 있는 모델을 구축하고 제안한 시스템을 실험을 통해 검증한다.