신경망 기반의 다국어 및 교차 언어 정보 검색 모델은 타겟 언어로 된 학습 데이터가 필요하지만, 이는 고자원 언어에 치중되어있다. 본 논문에서는 이를 해결하기 위해 영어 학습 데이터와 한국어-영어 병렬 말뭉치만을 이용한 효과적인 다국어 정보 검색 모델 학습 방법을 제안한다. 언어 예측 태스크와 경사 반전 계층을 활용하여 인코더가 언어에 구애 받지 않는 벡터 표현을 생성하도록 학습 방법을 고안하였고, 이를 한국어가 포함된 다국어 정보 검색 벤치마크에 대해 실험하였다. 본 실험 결과 제안 방법이 다국어 사전학습 모델과 영어 데이터만을 이용한 베이스라인보다 높은 성능을 보임을 실험적으로 확인하였다. 또한 교차 언어 정보 검색 실험을 통해 현재 검색 모델이 언어 편향성을 가지고 있으며, 성능에 직접적인 영향을 미치는 것을 보였다.
악성댓글은 인터넷상에서 정서적, 심리적 피해를 주는 문제로 인식되어 왔다. 본 연구는 한국어 악성댓글 탐지 분석을 위해 KcBERT 및 다양한 모델을 활용하여 성능을 비교하였다. 또한, 공개된 한국어 악성댓글 데이터가 부족한 것을 해소하기 위해 기계 번역을 이용하고, 다국어 언어 모델(Multilingual Model) mBERT를 활용하였다. 다양한 실험을 통해 KcBERT를 미세 조정한 모델의 정확도 및 F1-score가 타 모델에 비해 의미 있는 결과임을 확인할 수 있었다.
본 논문에서는 UD Korean Kaist v2.3 코퍼스를 이용하여 범용 품사 태깅, 표제어추출 그리고 의존 구문분석을 동시에 예측할 수 있는 보편적 다중 작업 모델을 제안하였다. 제안 모델은 사전학습 언어모델인 다국어 BERT (Multilingual BERT)와 한국어 BERT (KR-BERT와 KoBERT)을 대상으로 추가학습 (fine-tuning)을 수행하여 BERT 모델의 자가-집중 (self-attention) 기법과 그래프 기반 Biaffine attention 기법을 적용하여 제안 모델의 성능을 비교 분석하였다.
최근 자연어 처리에서는 사전 학습과 전이 학습을 통하여 다양한 과제에 높은 성능 향상을 성취하고 있다. 사전 학습의 대표적 모델로 구글의 BERT가 있으며, 구글에서 제공한 다국어 모델을 포함해 한국의 여러 연구기관과 기업에서 한국어 데이터셋으로 학습한 BERT 모델을 제공하고 있다. 하지만 이런 BERT 모델들은 사전 학습에 사용한 말뭉치의 특성에 따라 이후 전이 학습에서의 성능 차이가 발생한다. 본 연구에서는 소셜미디어에서 나타나는 구어체와 신조어, 특수문자, 이모지 등 일반 사용자들의 문장에 보다 유연하게 대응할 수 있는 한국어 뉴스 댓글 데이터를 통해 학습한 KcBERT를 소개한다. 본 모델은 최소한의 데이터 정제 이후 BERT WordPiece 토크나이저를 학습하고, BERT Base 모델과 BERT Large 모델을 모두 학습하였다. 또한, 학습된 모델을 HuggingFace Model Hub에 공개하였다. KcBERT를 기반으로 전이 학습을 통해 한국어 데이터셋에 적용한 성능을 비교한 결과, 한국어 영화 리뷰 코퍼스(NSMC)에서 최고 성능의 스코어를 얻을 수 있었으며, 여타 데이터셋에서는 기존 한국어 BERT 모델과 비슷한 수준의 성능을 보였다.
전자상거래 시장의 성장과 더불어 소비자들은 상품 및 서비스 구매 시 다른 사용자가 작성한 후기 정보에 기반하여 구매 의사를 결정하게 되며 이러한 후기를 효과적으로 분석하기 위한 연구가 활발히 이루어지고 있다. 특히, 사용자 후기에 대해 단순 긍/부정으로 감성분석하는 것이 아니라 다면적으로 분석하는 속성기반 감성분석 방법이 주목받고 있다. 속성기반 감성분석을 위한 다양한 방법론 중 최신 자연어 처리 기술인 트랜스포머 계열 모델을 활용한 분석 방법이 있다. 본 논문에서는 최신 자연어 처리 기술 모델에 두 가지 실제 데이터를 활용하여 다국어 사용자 후기에 대한 속성기반 감성분석을 진행하였다. 공개된 데이터 셋인 SemEval 2016의 Restaurant 데이터와 실제 화장품 도메인에서 작성된 다국어 사용자 후기 데이터를 활용하여 속성기반 감성분석을 위한 트랜스포머 계열 모델의 성능을 비교하였고 성능 향상을 위한 다양한 방법론도 적용하였다. 다국어 데이터를 활용한 모델을 통해 언어별로 별도의 모델을 구축하지 않고 한가지 모델로 다국어를 분석할 수 있다는 점에서 효용 가치가 클 것으로 예상된다.
감정 분석은 문서의 주관적인 감정, 의견, 기분을 파악하기 위한 방법으로 소셜 미디어, 온라인 리뷰 등 다양한 분야에서 활용된다. 문서 내 텍스트가 나타내는 단어와 문맥을 기반으로 감정 수치를 계산하여 긍정 또는 부정 감정을 결정한다. 2015년에 구축된 네이버 영화평 데이터 20 만개에 12 만개를 추가 구축하여 감정 분석 연구를 진행하였으며 언어 모델로는 최근 자연어처리 분야에서 높은 성능을 보여주는 BERT 모델을 이용하였다. 감정 분석 기법으로는 LSTM(Long Short-Term Memory) 등 기존의 기계학습 기법과 구글의 다국어 BERT 모델, 그리고 KoBERT 모델을 이용하여 감정 분석의 성능을 비교하였으며, KoBERT 모델이 89.90%로 가장 높은 성능을 보여주었다.
근래에 트랜스포머(Transformer) 구조를 기초로 하는 ChatGPT와 같은 생성모델이 크게 주목받고 있다. 트랜스포머는 다양한 신경망 모델에 응용되는데, 구글의 BERT(bidirectional encoder representations from Transformers) 문장생성 모델에도 사용된다. 본 논문에서는, 한글로 작성된 영화 리뷰에 대한 댓글이 긍정적인지 부정적인지를 판단하는 텍스트 이진 분류모델을 생성하기 위해서, 사전 학습되어 공개된 BERT 다국어 문장생성 모델을 미세조정(fine tuning)한 후, 새로운 한국어 학습 데이터셋을 사용하여 전이학습(transfer learning) 시키는 방법을 제안한다. 이를 위해서 104 개 언어, 12개 레이어, 768개 hidden과 12개의 집중(attention) 헤드 수, 110M 개의 파라미터를 사용하여 사전 학습된 BERT-Base 다국어 문장생성 모델을 사용했다. 영화 댓글을 긍정 또는 부정 분류하는 모델로 변경하기 위해, 사전 학습된 BERT-Base 모델의 입력 레이어와 출력 레이어를 미세 조정한 결과, 178M개의 파라미터를 가지는 새로운 모델이 생성되었다. 미세 조정된 모델에 입력되는 단어의 최대 개수 128, batch_size 16, 학습 횟수 5회로 설정하고, 10,000건의 학습 데이터셋과 5,000건의 테스트 데이터셋을 사용하여 전이 학습시킨 결과, 정확도 0.9582, 손실 0.1177, F1 점수 0.81인 문장 감정 이진 분류모델이 생성되었다. 데이터셋을 5배 늘려서 전이 학습시킨 결과, 정확도 0.9562, 손실 0.1202, F1 점수 0.86인 모델을 얻었다.
인공지능 기술의 비약적 발전과 함께 사람의 언어를 다루는 자연어 처리 분야 역시 활발하게 연구가 진행되고 있다. 특히 최근에는 구글에서 공개한 언어 모델인 BERT는 대량의 코퍼스를 활용해 미리 학습시킨 모델을 제공함으로써 자연어 처리의 여러 분야에서 좋은 성능을 보이고 있다. BERT에서 다국어 모델을 지원하고 있지만 한국어에 바로 적용했을 때는 한계점이 존재하기 때문에 대량의 한국어 코퍼스를 이용해 학습시킨 모델을 사용해야 한다. 또한 텍스트는 어휘, 문법적인 의미만 담고 있는 것이 아니라 전후 관계, 상황과 같은 문맥적인 의미도 담고 있다. 기존의 자연어 처리 분야에서는 어휘나 문법적인 의미를 중심으로 연구가 주로 이루어졌다. 텍스트에 내재되어 있는 문맥 정보의 정확한 파악은 맥락을 이해하는 데에 있어 중요한 역할을 한다. 단어들의 관계를 이용해 연결한 지식그래프는 컴퓨터에게 쉽게 문맥을 학습시킬 수 있는 장점이 있다. 본 논문에서는 한국어 코퍼스를 이용해 사전 학습된 BERT 모델과 지식 그래프를 이용해 한국어 문맥 정보를 추출하는 시스템을 제안하고자 한다. 텍스트에서 중요한 요소가 되는 인물, 관계, 감정, 공간, 시간 정보를 추출할 수 있는 모델을 구축하고 제안한 시스템을 실험을 통해 검증한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.