• Title/Summary/Keyword: 다공형

Search Result 327, Processing Time 0.027 seconds

Physical, Morphological, and Chemical Analysis of Fly Ash Generated from the Coal Fired Power Plant (석탄 화력발전소에서 발생되는 석탄회 특성과 형성 분석에 관한 연구)

  • 이정언;이재근
    • Journal of Energy Engineering
    • /
    • v.7 no.1
    • /
    • pp.146-156
    • /
    • 1998
  • Fly ash produced in coal combustion is a fine-grained material consisting mostly of spherical, glassy, and porous particles. A physical, morphological, and chemical characteristic of fly ash has been analyzed. This study may contribute to the data base of domestic fly ash, the improvement of combustion efficiency, ash recycling and ash collection in the electrostatic precipitator. The physical property of fly ash is determined using a particle counter for the measurement of ash size distribution and gravimeter. Morphological characteristic of fly ash is performed using a scanning electron micrograph and an optical microscope. The chemical components of fly ash are determined using an inductively coupled plasma emission spectrometry (ICP). The distribution of fly ash size was ranged from 15 to 25 $\mu$m in mass median diameter. Exposure conditions of flue gas temperature and duration within the combustion zone of the boiler played an important role on the morphological properties of the fly ash such as shape, relative opacity, coloration, cenosphere and plerosphere. The spherical fly ash might be generated at the condition of complete combustion. The size of fly ash was found to be increased the with particle-particle interaction of agglomeration and coagulation. Fly ash consisted of $SiO_2\;Al_2O_3\;and\;Fe_2O_3$ with 85% and carbon with 3~10% of total mass.

  • PDF

The Present and the Prospects for Batteries (전지기술의 국내외 연구동향)

  • 이주성
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 1999.10a
    • /
    • pp.1-2
    • /
    • 1999
  • 시간과 공간의 구애를 받지 않는 양질의 음성, 화상, 문자정보의 교환을 위한 노력으로 디지털 휴대폰과 휴대용 컴퓨터가 등장하면서 음성과 문자정보의 교환분야에 커다란 진보를 이룩하였다. 그러나 현재는 휴대폰이 음성정보에 문자정보교환이 추가된 상황이기 때문에, 아직도 관련 정보교환기술 및 기기개발이 진행되고 있다. 앞으로 휴대폰과 휴대용 컴퓨터의 기능을 통합하고 화상정보까지 결합된 휴대용 정보기기를 위해서는 전자회로의 집적화 및 통신속도 증대가 필수적이다. 또한 이들 휴대용 정보기기를 구동시키기 위한 전력도 증가될 것으로 예측되기 때문에, 현재 전원으로 사용되는 2차전지보다 에너지 밀도가 더욱 증패된 전지가 요구될 것으로 예상된다. 그리고 내연기관의 배기에 의해 발생되는 환정오염문제를 해결하기 위한 방법중의 일환으로 전기자동차 개발이 진행되고 있으며, 이들 전기자동차에 2차전지를 장착하기 위해서 경제성이 있고, 고속충전이 가능하고, 안전성이 높은 고에너지 밀도의 2차 전지 개발이 요구되고 있다. 현재 2차전지는 음극재료나 양극재료에 따라 낚축전지, 니켈/카드륨(Ni/Cd) 전지, 니켈/수소(Ni/MH) 전지, 라륨 2 차전지등이 있으며, 전극재료의 고유특성에 의해 전위와 애너지 밀도가 결정된다. 특히 리튬 2차전지는 리튬의 낮은 산화환원전위와 분자량으로 인해 에너지 밀도가 높기 때문에 앞에서 언급한 휴대용 전자기기의 구동전원으로 많이 사용되고 있다. 리튬 2차전지는 음극 재료가 금속리튬인 경우는 리튬금속으로, 탄소재료인 경우는 리튬이온이라 하며, 한편으로 전해질이 고체 고분자이거나 혹은 역체 유기용매와 리튬염을 고분자와 혼성시킨 겔(gel)인 경우는 고분자로, 전해짙이 리튬염이 전리되어 있는 유동성 액체일 경우는 고분자를 생략하여 구분하고 있다. 즉 리튬금속 2 차전지(LB), 리튬이온 2 차전지(LIB), 리튬금속 고분자 2차전지(LPB), 리튬 이온 고분자 2차전지(LIPB)로 크게 구분된다. 금속리듐을 음극으로 사용하고 전해질로는 리튬염이 전리되어 있는 액체유기용매 를 사용한 리튬금속 2차전지는, 금속리튬전극이 충방전 과정을 반복하면서, 전리된 리튬이 균일하게 산화환원되지 못하고 표변에서 양극방향으로 성장하는 수지상 (dendrite) 현상으로 인해 안전성 확보에 문게가 있었다. 리튬과 알루미늄 합금형태로 음극에 사용한 동전형 전지는 상용화 되었지만, 이러한 단점을 개선하기 위해 리튬이온이 금속으로 석활되는 환원반응전위보다 높은 전위에서 전극재료가 충전되면서 리튬이온이 저장되고, 방전되면서 배출되는 탄소를 음극재료로, 그리고 리튬이온이 충방 전시 가역적으로 삼입 탈리되는 층상의 리튬금속산화물을 양극으로 구성하고, 엑체 전해질과 다공성 고분자 분리막을 사용한 것이 LIB이다. LIB에서 리튬이온의 이동이 가능한 액체전해질의 가능을 고분자 전해질이 대신함으로서 보다 높은 안정성을 확보 한 전지가 LIPB 이다. 또한 고분자 전해질을 사용한 경우 금속리튬상에서의 수지상 성장이 저하되는 현상이 관찰됨으로서, 이론용량이 3,860mAh/g 에 달하는 리튬금속 혹은 합금을 고분자 전지에서 음극으로 사용하고자 하는 2 차전지가 LPB 이다. 리튬 2차전지는 비록 1989년 액체전해질을 사용한 금속리튬 2차전지의 실패전력을 안고있지만 궁극적으로는 이론적으로 최대의 에너지밀도를 가지고 있는 LPB를 지 향할 것으로 예상되지만 가까운 장래에 실현되기는 어려울 것이다. 따라서 향후의 라튬 2차전지의 전개방향은 현재의 LIB를 고분자 전해질을 채용하는 LIPB로 진행시커면서 저가의 전극재료개발을 지속적으로 추진할 것으로 예상된다. 현재 리튬 2차전지는 소형전지에 국한되고 있지만 전기자동차나 전력저장용으로 이를 대형화시커기 위해서는 열적특성이 우수하고 저가인 전극재료개발이 선행되야하기 때문에, 저가의 탄소재료와 코발트산화물을 대신할 수 있는 철, 망칸 또는 니켈산 화물의 개발이 필요하다.

  • PDF

The Operative Treatment using Porous Hydroxyapatite for Intraarticular Calcaneal Fractures of Joint Depression Type (관절함몰형 종골 골절에 대한 다공성 하이드록시 아파타이트를 이용한 수술적 치료)

  • Choi, Eui-Sung;Kim, Yong-Min;Kim, Dong-Soo;Shon, Hyun-Chul;Park, Kyoung-Jin;Cho, Byung-Ki;Park, Ji-Kang;Yoo, Jun-Il
    • Journal of Korean Foot and Ankle Society
    • /
    • v.14 no.1
    • /
    • pp.58-65
    • /
    • 2010
  • Purpose: This study was performed to evaluate the clinical outcomes of operative treatment using porous hydroxyapatite for intraarticular calcaneal fracture of joint depression type. Materials and Methods: Twenty patients with intraarticular calcaneal fracture were followed up for more than 1 year. The period to union was calculated to evaluate the osteoconductivity of porous hydroxyapatite used as bone graft substitute. The measurement of Bohler angle, Gissane angle and the degree of articular surface depression was performed through preoperative and postoperative radiographs. The clinical evaluation was performed according to hindfoot score of the American Orthopaedic Foot and Ankle Society (AOFAS) and scale of the Creighton-Nebraska health foundation (CNHF). Results: Bohler angle and Gissane angle had improved significantly from preoperative average $10.4^{\circ}$, $117.8^{\circ}$ to average $22.6^{\circ}$, $113.5^{\circ}$ immediate postoperatively, and had maintained to average $21.2^{\circ}$ and $114.4^{\circ}$ at the last follow-up. The degree of articular surface depression had improved significantly from preoperative average 4.8 mm to 1.5 mm at the last follow-up. All cases achieved bone union, and the interval to union was average 12.8 weeks. AOFAS score was average 85.2 points at last follow-up. There were 7 excellent, 10 good, and 3 fair results according to the CNHF scale. Therefore, 17 cases (85%) achieved satisfactory results. Conclusion: Plate fixation using porous hydroxyapatite seems to be one of effective treatment methods for intraarticular calcaneal fracture of joint depression type, because of supporting the reduction of subtalar articulation by augmenting bony defect and facilitating bone formation. Further evaluation about long-term radiological changes and histological analysis on hydroxyapatite implantation site should be required.

Fabrication of Single-Crystal Silicon Microstructure by Anodic Reaction in HF Solution (HF 양극반응을 이용한 단결정 실리콘 미세구조의 제조)

  • Cho, Chan-Seob;Sim, Jun-Hwan;Lee, Seok-Soo;Lee, Jong-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.1 no.2
    • /
    • pp.183-194
    • /
    • 1992
  • Some silicon micromechanical structures useful in sensors and actuators have been fabricated by electropolishing or porous silicon formation technique by anodic reaction in HF solution. The microstructures were lightly doped single crystal silicon and the formation was isotropic independent of crystal directions. Porous silicon layer(PSL) was formed selectively in $n^{+}$ region of $n^{+}/n$ silicon structure by anodic reaction in concentrated HF(20-48%) solution. Characteristics of the formed PSL were investigated along with change of the reaction voltage, HF concentration and the reaction time. PSL was formed only in $n^{+}$ region. The porosity of the PSL was decreased with the increase of HF concentration and independent of reaction voltage. For the case of $n/n^{+}/n$ structures, the etched surface of silicon was fairly smooth and a cusp was not found. The thickness of the microstructures was the same as that of the epitaxial n-Si layer and good uniformity. We have fabricated acceleration sensors by anodic reaction in HF solution(5 wt%) and planar technology. The process was compatible with conventional It fabrication technique. Various micromechanical structures, such as rotors of motor, gears and linear actuator, were also fabricated by the technique and examined by SEM photographs.

  • PDF

Chitosan-alginate Gel Modified Poly (L-Lactic-co-ε-Caprolactone) (PLCL) as a Scaffold for Cartilage Tissue Engineering (변형된 키토산 알지네이트 겔 poly (L-Lactic-co-ε-Caprolactone) 지지체의 연골 조직 재생 평가)

  • Sutradhar, Bibek Chandra;Hwang, Yawon;Choi, Seokhwa;Kim, Gonhyung
    • Journal of Veterinary Clinics
    • /
    • v.32 no.3
    • /
    • pp.224-230
    • /
    • 2015
  • This study was designed in the fabricated poly (L-Lactic-co-${\varepsilon}$-Caprolactone) (PLCL) scaffold using chitosan-alginate hydrogel, which would be more suitable to maintain the biological and physiological functions continuing three dimensional spatial organizations for chondrocytes. As a scaffold, hydrogels alone is weak at endure complex loading within the body. In this study, we made cell hybrid scaffold constructs with poly (L-Lactic-co-${\varepsilon}$-Caprolactone) (PLCL) scaffold and hydrogels to make a three-dimensional composition of cells and extracellular matrix, which would be a mimic of a native cartilage. Using a particle leaching technique with NaCl, we fabricated a highly-elastic scaffold from PLCL with 85% porosity and $300-500{\mu}m$ pore size. A mixture of bovine chondrocytes and chitosan-alginate gel was seeded and compared with alginate as a control on the PLCL scaffold. The cell maturation, proliferation, extracellular matrix synthesis, glycosaminoglycans (sGAG) production and collagen type-II expressions were better in chondrocytes seeded in chitosan-alginate hydrogel than in alginate only. These results indicate that chondrocytes with chitosan-alginate gel on PLCL scaffolds provide an appropriate biomimetic environment for cell proliferation and matrix synthesis, which could successfully be used for cartilage repair and regeneration.

Variation of Water Quality and Periphytic Algae in Multi-layer and Porous Structure for River-bed Protection using Bio-polymer materials: A Case Study of Daecheong-stream in Gimhae-Si (Bio-polymer 소재를 활용한 다층다공성 하상보호공 적용에 따른 수질 및 부착조류의 변화량: 김해시 대청천을 중심으로)

  • Lee, Sang-Hoon;Ahn, Hong-Kyu;Che, Soo-Kwon
    • Ecology and Resilient Infrastructure
    • /
    • v.6 no.4
    • /
    • pp.227-235
    • /
    • 2019
  • This study monitored Daecheong 1-bo, Daecheong-stream, which carried out the project in 2014, from 2015 to 2016. The technology applied to the stream was evaluated using Periphytic Algae to check contamination indicators and ecological health of the area with an integral river-bed protection using non-toxic materials. The water quality of the monitoring section was confirmed to be above the river environment standard (II), and it was confirmed that the Saproxenic taxa of the river bed protection were higher than the upper and downstream sections. The TDI, which is an index of attachment algae, was shown in the average 51.03 and 52.15 for the pilot project sections in 2015 and 2016, confirming that the index is of the "normal" grade. This is the other sections in the upstream and downstream sections showed higher than "bad", which is thought to have a positive effect on the habitat of the river ecosystem components, especially the microbial population in river bed protection.

Friction Factor in Micro Channel Flow with Electrochemical Reactions in Fuel Cell (전기화학반응을 수반한 유로채널 형상에 따른 마찰계수에 대한 연구)

  • Cho, Son-Ah;Lee, Pil-Hyong;Han, Sang-Seok;Choi, Seong-Hun;Hwang, Sang-Soon
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.4
    • /
    • pp.245-251
    • /
    • 2007
  • The performance of fuel cell is enhanced with increasing reaction surface. Narrow flow channels in flow plate cause increased pumping power. Therefore it is very important to consider the pressure drops in the flow channel of fuel cell. Previous research for pressure drop for micro channel of fuel cell was focused on effects of various configuration of flow channel without electrochemical reaction. It is very important to know pressure loss of micro flow channel with electrochemical reaction because fluid density in micro channel is changed due to chemical reaction. In this paper, it is investigated that the pressure drops in micro channel of various geometries at anode and cathode with electrochemical reaction and compared them to friction coefficient (fRe), velocity, pressure losses for corresponding non reacting flow channel. The results show that friction factors for cold flow channel could be used for parallel and bended flow channel for flow channel design of fuel cell. In the other hand, pressure drop for serpentine flow channel is the lowest among flow channels due to bypass flow across gas diffusion layer under reacting flow condition although its pressure drop is highest for cold flow condition.

Preparation and Characterization of Porous Sintered Body Made from Coal Bottom Ash and Dredged soil (석탄(石炭) 바닥재와 준설토(浚渫土)를 이용한 다공성(多孔性) 소결체(燒結體)의 제조 및 특성 평가)

  • Kim, Kang-Duk;Kang, Seung-Gu
    • Resources Recycling
    • /
    • v.19 no.1
    • /
    • pp.33-39
    • /
    • 2010
  • The spheric sintered body with $6{\pm}2mm$ diameter was manufactured in a rotary kiln at $1125^{\circ}C$/15 min using green body formed by pelletizing the batch powder composing of coal bottom ash produced from power plant and dredged soil by 70:30, wt%. And the physical properties of sintered body (BD) were analyzed to confirm the possibility for applying to an absorbent to restore a contaminated soil. The sintered body had a giant pore above 100 ${\mu}m$ and a fine pore below 10 ${\mu}m$, and bulk density was 1.4. Also its specific surface area, porosity and void proportion were $12.0m^2/g$, 30.1% and 38.2% respectively. The crushed body (BD-C), produced by crushing a BD specimen into an irregular shape with a aspect ratio of about 2, was similar to BD specimen at bulk density and pore size distribution. But it had superior values of specific surface area, porosity and void proportion compared with BD specimen owing to a decreased apparent volume due to conversion of closed pore existed at interior of BD to open pore during a crushing process. The IEP of sintered body occurred at about pH=5, so the optimum pH condition of reacting aqueous solution could be known before bonding a microbe to the sintered body. Hence, the optimum void proportion and porosity of an absorbent can be obtained by appropriate mixing a BD with BD-C from the base data calculated in this study.

A Study on Durability of Concrete According to Mix Condition by Marine Environment Exposure Experiment (해양환경폭로실험을 통한 배합조건별 콘크리트의 내구성에 관한 연구)

  • Jo, Young-Jin;Choi, Byung-Wook;Choi, Jae-Seok;Jung, Yong-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4542-4551
    • /
    • 2013
  • Recently, much attention has focused on the study of eco-friendly concrete using recycled by-products for protecting marine ecosystem and durability of concrete exposed to marine condition. This study evaluated the durabilities of 4 different type of concrete mixtures(Control, Marine, Porous, New slag) with the seawater resistance by marine environment exposure experiment and freeze-thaw resistance, resistance to chloride ion penetration considering severe deterioration environment. In this study, we conducted seawater resistance using compressive strength according to the age(7/28/56 days) of specimen and curing conditions(standard(fresh water), tidal, immersion, artificial seawater). The results show that compressive strength of concrete exposed to marine environment exposure condition was lower than those of the standard curing condition. Also, compressive strength of New slag using eco-friendly materials for protecting marine ecosystem was lower than those of other concretes, there is need to improve the performance of New slag. The results for freeze-thaw resistance showed that all mixtures have excellent, but the Porous and New slag were lower than others. Also, the more improved resistance to chloride ion penetration than those of the Marine was measured in the New slag regardless of curing condition.

Effect of limestone addition on mechanical properties of ceramic tiles with fly ash (플라이애시가 첨가된 도자타일 성능에 석회석 함량이 미치는 효과)

  • Lee, Jin-Wook;Han, Kyu-Sung;Hwang, Kwang-Taek;Kim, Jin-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.6
    • /
    • pp.256-262
    • /
    • 2018
  • A great amount of fly ash, which is a waste from a thermal power plant, has not been appropriately recycled until now. Landfill of flay ash causes environmental pollution and enormous economic costs. In this study, manufacturing of architectural ceramic tile was investigated replacing fly ash with clay raw material. The properties of porcelain tile was analyzed after manufacturing porcelain tile with mineral based glaze and fast firing process. In particular, the effect of the fly ash addition on the properties of ceramic tile was investigated by increasing the amount of limestone addition. Porcelain tile with fly ash showed excellent bending strength, water absorption, warping and abrasion resistance. However, a significant decrease in durability was observed through the autoclave test. Addition of limestone increased the water absorption, twisting and hydration expansion of the ceramic tile, but it was confirmed that the durability of the ceramic tile with fly ash was greatly improved. In conclusion, recycled architectural ceramic tiles, which can meet domestic construction standards, could be manufactured with the addition of fly ash and limestone.