• Title/Summary/Keyword: 다공질체

Search Result 79, Processing Time 0.029 seconds

Influence of Nanostructured TiO2 Electrode Fabricated with Acid-treated Paste on the Photovoltaic Efficiency of Dye-Sensitized Solar Cells (산처리된 페이스트로 제조한 나노 구조체 TiO2 전극이 염료감응형 태양전지의 효율에 미치는 영향)

  • Lee, Jae-Wook;Hwang, Kyung-Jun;Roh, Sung-Hee;Kim, Sun-Il
    • Applied Chemistry for Engineering
    • /
    • v.18 no.4
    • /
    • pp.356-360
    • /
    • 2007
  • Recently, dye sensitized solar cells (DSSCs) composed of nanoporous $TiO_2$, light-sensitive dyes, electrolytes, and counter electrode have been received much attention. Nanostructured particles with higher surface area for the higher adsorption of Ru (II) dye are required to increase the quantity of light absorption. Also, it has been reported that the key factor to achieve high energy conversion efficiency in the photoelectrode of DSSC is the heat treatment of $TiO_2$ paste with acid addition. In this work, we investigated the influence of acid treatment of $TiO_2$ solar cell on the photovoltaic performance of DSSC. The working electrodes fabricated in this work were characterized by X-ray photoelectron spectroscopy (XPS), extended X-ray absorption fine structure (EXAFS), field emission scanning electron microscope (FE-SEM), and atomic force microscope (AFM). In addition, the influence of nanostructured photoelectrode fabricated with the acid-treated paste on the energy conversion efficiency was investigated on the basis of photocurrent-potential curves. It was found that the influence of acid-treated paste on the photovoltaic efficiency was significant.

Low Temperature Preparation of Transparent Glass-Ceramic Using Metal-Alkoxides (1) Synthesis and Properties of Porous Monolithic Gel in Li2O·1.7Al2O3·8.6SiO2 (금속 알콕시드를 이용한 투명 결정화유리의 저온 합성 (1) Li2O·1.7Al2O3·8.6SiO2 다공성 겔체의 합성)

  • Chun, Kyung-Soo;Tak, Joong-Jae
    • Applied Chemistry for Engineering
    • /
    • v.18 no.6
    • /
    • pp.568-574
    • /
    • 2007
  • Crack-free dried gel monoliths of the composition $Li_2O1{\cdot}7Al_2O_3{\cdot}8.6SiO_2$ have been prepared as a precursor of transparent glass-ceramic by the hydrolysis and polycondensation of mixed metal alkoxides in solutions containing N,N-dimethylformamide as the drying control chemical additive, alcohols, and water. It was investigated that activation energy for gelation according to the variation of water concentration ranged from 13 to 14 kcal/mol. Only when the amount of water for gelation was 3 times higher than the stoichiometric amount, monolithic dry gels were successfully prepared after drying at $70{\sim}75^{\circ}C$ and at a rate of 0.1~0.3%/h. The specific surface area, the pore volume, the average pore diameters of dried gel at $180^{\circ}C$ were about $239.40m^2/g$, 0.001~0.03 mL/g, and $145.62{\AA}$, respectively. It showed that the dried monolithic gel had a porous body. The DTA curve had the first exothermic peak around $800^{\circ}C$ and the 2nd peak around $980^{\circ}C$, which may correspond to crystallization of the gel.

Thermoelectric Properties of Al4C3-doped α-SiC (Al4C3 첨가 α-SiC의 열전변환특성)

  • 박영석;배철훈
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.10
    • /
    • pp.991-997
    • /
    • 2003
  • The effect of A1$_4$C$_3$ additive on the thermoelectric properties of SiC ceramics were studied. Porous SiC ceramics with 47∼59% relative density were fabricated by sintering the pressed $\alpha$-SiC powder compacts with A1$_4$C$_3$at 2100∼220$0^{\circ}C$ for 3 h in Ar atmosphere. Crystalline phases of the sintered bodies were identified by powder X-Ray Diffraction (XRD) and their microstructures were observed with a Scanning Electron Microscope (SEM). In the case of A1$_4$C$_3$ addition, the phase transformation of 6H-SiC to 4H-SiC could be observed during sintering. The Seebeck coefficient and electrical conductivity were measured at 550∼95$0^{\circ}C$ in Ar atmosphere. In the case of undoped specimens, the Seebeck coefficients were positive (p-type semiconducting) possibly due to a dominant effect of the acceptor impurities (Al, Fe) contained in the starting powder and electrical conductivity increased as increasing sintering temperature. Electrical conductivity of A1$_4$C$_3$doped specimen is larger than that of undoped specimen under the same condition, which might be due to the reverse phase transformation and increasing of carrier density. And the Seebeck coefficient of A1$_4$C$_3$ doped specimen is also larger than that of undoped specimen. The density of specimen, the amount of addition and sintering atmosphere had significant effects on the thermoelectric property.

Modeling of SP responses for geothermal-fluid flow within EGS reservoir (EGS 지열 저류층 유체 유동에 의한 SP 반응 모델링)

  • Song, Seo Young;Kim, Bitnarae;Nam, Myung Jin;Lim, Sung Keun
    • Geophysics and Geophysical Exploration
    • /
    • v.18 no.4
    • /
    • pp.223-231
    • /
    • 2015
  • Self-potential (SP) is sensitive to groundwater flow and there are many causes to generate SP. Among many mechanisms of SP, pore-fluid flow in porous media can generate potential without any external current source, which is referred to as electrokinetic potential or streaming potential. When calculating SP responses on the surface due to geothermal fluid within an engineered geothermal system (EGS) reservoir, SP anomaly is usually considered to be generated by fluid injection or production within the reservoir. However, SP anomaly can also result from geothermal water fluid within EGS reservoirs experiencing temperature changes between injection and production wells. For more precise simulation of SP responses, we developed an algorithm being able to take account of SP anomalies produced by not only water injection and production but also the fluid of geothermal water, based on three-dimensional finite-element-method employing tetrahedron elements; the developed algorithm can simulate electrical potential responses by both point source and volume source. After verifying the developed algorithm, we assumed a simple geothermal reservoir model and analyzed SP responses caused by geothermal water injection and production. We are going to further analyze SP responses for geothermal water in the presence of water production and injection, considering temperature distribution and geothermal water flow in the following research.

A Numerical Study on the Flow and Heat Transfer Characteristics of Aluminum Pyramidal Truss Core Sandwich (알루미늄 피라미드 트러스 심재 샌드위치의 열유동 특성에 관한 수치해석 연구)

  • Kang, Jong-Su;Kim, Sang-Woo;Lim, Jae-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.638-644
    • /
    • 2019
  • In this study, the fluid flow and heat transfer characteristics within sandwich panels are investigated using computational fluid dynamics. Within the sandwich panels having periodic cellular cores, air can freely move inside the core section so that the structure is able to perform multi-functional roles such as simultaneous load bearing and heat dissipation. Thus, there needs to examine the thermal and flow analysis with respect to design variables and various conditions. In this regard, ANSYS Fluent was utilized to explore the flow and heat transfer within the pyramidal truss sandwich structures by varying the truss angle and inlet velocity. Without the entry effect in the first unitcell, the constant rate of pressure and the constant rate of Nusselt number was observed. As a result, it was demonstrated that Nusselt number increases and friction factor decreases as the inlet velocity increases. Moreover, the rate of Nusselt number and friction factor was appreciable in the range of V=1-5m/s due to the transition from laminar to turbulent flow. Regarding the effect of design variable, the variation of truss angle did not significantly influence the characteristics.

The Effect of Stacking Fault on Thermoelectric Property for n-type SiC Semiconductor (N형 SiC 반도체의 열전 물성에 미치는 적층 결함의 영향)

  • Pai, Chul-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.13-19
    • /
    • 2021
  • This study examined the effects of stacking faults on the thermoelectric properties for n-type SiC semiconductors. Porous SiC semiconductors with 30~42 % porosity were fabricated by the heat treatment of pressed ��-SiC powder compacts at 1600~2100 ℃ for 20~120 min in an N2 atmosphere. XRD was performed to examine the stacking faults, lattice strain, and precise lattice parameters of the specimens. The porosity and surface area were analyzed, and SEM, TEM, and HRTEM were carried out to examine the microstructure. The electrical conductivity and the Seebeck coefficient were measured at 550~900 ℃ in an Ar atmosphere. The electrical conductivity increased with increasing heat treatment temperature and time, which might be due to an increase in carrier concentration and improvement in grain-to-grain connectivity. The Seebeck coefficients were negative due to nitrogen behaving as a donor, and their absolute values also increased with increasing heat treatment temperature and time. This might be due to a decrease in stacking fault density, i.e., a decrease in stacking fault density accompanied by grain growth and crystallite growth must have increased the phonon mean free path, enhancing the phonon-drag effect, leading to a larger Seebeck coefficient.

A Study on the Characteristics Measurement of Main Engine Exhaust Emission in Training Ship HANBADA (실습선 한바다호 주기관 배기가스 배출물질 특성 고찰에 관한 연구)

  • Choi, Jung-Sik;Lee, Sang-Deuk;Kim, Seong-Yun;Lee, Kyoung-Woo;Chun, Kang-Woo;Nam, Youn-Woo;Jung, Kyun-Sik;Park, Sang-Kyun;Choi, Jae-Hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.6
    • /
    • pp.658-665
    • /
    • 2013
  • In this study, we measured particulate matter(PM) which emerged as the hot issue from the International Maritime Organization(IMO) and the exhaust emission using HANBADA, the training ship of Korea Maritime University. In particular, the PM was obtained with TEM grid. PM structure was observed by electron microscopy. And exhaust gases such as NOx, $CO_2$, and CO were measured using the combustion gas analyzer(PG-250A, HORIBA). The results of this study are as follows. 1) When the ship departed from the port, the maximum difference in PM emissions were up to 30 % due to the Bunker Change. 2) Under the steady navigation, emission of PM was $1.34mg/m^3$ when Bunker-A is changing L.R.F.O(3 %). And, at the fixed L.R.F.O (3 %), emission of PM was $1.19mg/m^3$. When the main engine RPM increased up to 20 % with fixed L.R.F.O(3 %), emission of PM was $1.40mg/m^3$. When we changed to low quality oil(L.R.F.O(3 %)), CO concentration from main engine increased about 16 %. On the other hand, when the main engine RPM is rising up to 20 %, CO concentration is increased more than 152 percent. These results imply that the changes of RPM is a dominant factor in exhaust emission although fuel oil type is an important factor. 3) The diameter of PM obtained with TEM grid is about $4{\sim}10{\mu}m$ and its structure shows porous aggregate.

The Study on Geology and Volcanism in Jeju Island (II): Petrochemistry and $^{40}Ar/^{39}Ar$ Absolute Ages of the Volcanic Rocks in Gapado-Marado, Jeju Island (제주도의 지질과 화산활동에 관한 연구 (II): 가파도와 마라도 화산암류의 암석화학 및 $^{40}Ar/^{39}Ar$ 절대연대)

  • Koh, Gi-Won;Park, Jun-Beom
    • Economic and Environmental Geology
    • /
    • v.43 no.1
    • /
    • pp.53-66
    • /
    • 2010
  • We report petrologic characteristics including $^{40}Ar-^{39}Ar$ absolute ages of the subsurface lavas recovered from borehole cores in two islets, Marado and Gapado, off the southwestern coast of Jeju in southernmost Korea and discuss on the volcanism in the region. The lavas in Gapado are apparently divided into one unit with bright colored, aphanitic texture and sheet jointed, and another unit with dark colored and massive. The outcrops often show differentially weathered pattern due to textural difference. While, the lavas in Marado have vesicular and glomerporphyric texture, even though each lava flow unit in Marado has slight unique texture with variation of vesicularity and phenocrysts. The chemical composition of rock core samples from Gapa borehole and Mara borehole shows that the lavas from Gapado and Marado are classified into basaltic trachyandesite($SiO_2$ 52.6-53.6 wt%, $Na_2O+K_2O$ 7.3-7.5 wt%) and tholeiitic andesite($SiO_2$ 51.7-52.8 wt%, $Na_2O+K_2O$ 3.6-4.1 wt%), respectively. The measured $^{40}Ar-^{39}Ar$ plateau ages range from $824{\pm}32\;Ka$(MSL -69 m) to $758{\pm}\;Ka$(MSL 19 m) for core samples of Gapa borehole and $259{\pm}168\;Ka$(MSL -26 m) for a core sample of Mara borehole, respectively. The absolute age of Gapado basaltic trachyandesite is well correlated with that of Sanbangsan trachyte(Won et al., 1986). Meanwhile, the age of a sample in Marado has $259{\pm}168\;Ka$(MSL -26 m) with poor plateau age formation and high error range. We report the data in caution but the rock composition and absolute age of Marado tholeiitic andesite are relatively correlated with those of lava units from Duksu and Sangmo-2 boreholes, indicating the volcanism during 260-150 Ka. On the basis of interpretation of occurrences of exposed and subsurface volcanic rocks of the study area, stratigraphic relationship with adjacent borehole cores and the bathymetry chart of surrounding area, it indicates that the lavas in Gapado were formed around 800 Ka during relatively early stage of volcanic activity in Jeju Island. Meanwhile, Marado may have originated around 260-150 Ka during relatively young stage of volcanism in Jeju Island. It is inferred that the volcanisms have originated in land and these islets were individual ancient volcanoes. The apparent topography has been re-shaped by tidal erosion due to transgression.

Plasma-assisted Catalysis for the Abatement of Isopropyl Alcohol over Metal Oxides (금속산화물 촉매상에서 플라즈마를 이용한 IPA 저감)

  • Jo, Jin Oh;Lee, Sang Baek;Jang, Dong Lyong;Park, Jong-Ho;Mok, Young Sun
    • Clean Technology
    • /
    • v.20 no.4
    • /
    • pp.375-382
    • /
    • 2014
  • This work investigated the plasma-catalytic decomposition of isopropyl alcohol (IPA) and the behavior of the byproduct compounds over monolith-supported metal oxide catalysts. Iron oxide ($Fe_2O_3$) or copper oxide (CuO) was loaded on a monolithic porous ${\alpha}-Al_2O_3$ support, which was placed inside the coaxial electrodes of plasma reactor. The IPA decomposition efficiency itself hardly depended on the presence and type of metal oxides because the rate of plasma-induced decomposition was so fast, but the behavior of byproduct formation was largely affected by them. The concentrations of the unwanted byproducts, including acetone, formaldehyde, acetaldehyde, methane, carbon monoxide, etc., were in order of $Fe_2O_3/{\alpha}-Al_2O_3$ < $CuO/{\alpha}-Al_2O_3$ < ${\alpha}-Al_2O_3$ from low to high. Under the condition (flow rate: $1L\;min^{-1}$; IPA concentration: 5,000 ppm; $O_2$ content: 10%; discharge power: 47 W), the selectivity towards $CO_2$ was about 40, 80 and 95% for ${\alpha}-Al_2O_3$, $CuO/{\alpha}-Al_2O_3$ and $Fe_2O_3/{\alpha}-Al_2O_3$, respectively, indicating that $Fe_2O_3/{\alpha}-Al_2O_3$ is the most effective for plasma-catalytic oxidation of IPA. Unlike plasma-alone processes in which tar-like products formed from volatile organic compounds are deposited, the present plasma-catalyst hybrid system did not exhibit such a phenomenon, thus retaining the original catalytic activity.