• Title/Summary/Keyword: 다공성 실리카

Search Result 106, Processing Time 0.022 seconds

Pore-Controlled Synthesis of Mesoporous Silica Particles by Spray Pyrolysis from Aqueous Silicic Acid (규산 수용액으로부터 분무열분해법에 의한 기공 특성이 제어된 메조기공의 다공성 실리카 분말 합성)

  • Chang, Han Kwon;Lee, Jin Woo;Oh, Kyoung Joon;Jang, Hee Dong;Kil, Dae Sup;Choi, Jeong Woo
    • Particle and aerosol research
    • /
    • v.8 no.2
    • /
    • pp.89-95
    • /
    • 2012
  • Spherical mesoporous silica particles, of which main pore diameter was 3.8 nm, were successfully prepared by spray pyrolysis from aqueous silicic acid. The effect of precursor concentration, reaction temperature, and the addition of urea and PEG on the particle diameter and pore properties such as pore diameter, total pore volume, and specific surface area were investigated by using FE-SEM, particle size analyzer, and nitrogen absorption-desorption analysis. With an increase of the precursor concentration from 0.2 M to 0.7 M, the average particle diameter, total pore volume, and specific surface area of the porous silica particles increased from 0.56 to $0.96\;{\mu}m$, 0.434 to $0.486\;cm^3/g$, 467.8 to $610.4\;m^2/g$, respectively. Within the temperature range $(600\;^{\circ}C{\sim}800\;^{\circ}C)$, there was no significant difference in the pore diameter, total pore volume, and specific surface area. In addition, the addition of urea as an expansion aid led to slight increases in particle diameter, pore diameter, and specific surface area. However, when the polyethylene glycol (PEG) as an organic template was used, the total pore volume of porous particles increased dramatically.

Formation of Polypropylene Thin Films with Superhydrophobic Surface (초소수성 표면특성을 갖는 폴리프로필렌 박막형성)

  • Park, Jae Nam;Shin, Young Sik;Lee, Won Gyu
    • Applied Chemistry for Engineering
    • /
    • v.25 no.6
    • /
    • pp.598-601
    • /
    • 2014
  • The effects of process parameters for the formation of polypropylene film such as the polypropylene concentration in the solution, drying temperature for coating film, and variation of nano-silica content on the surface structure and property of polypropylene film have been studied. A super-hydrophobic polypropylene film with a maximum contact angle of $154^{\circ}$ was obtained at the condition of a polypropylene concentration of 30 mg/mL, a drying temperature of $30^{\circ}C$, a drying pressure of 93 mtorr for 90 min. The increase of a drying temperature reduced the contact angle by enhancing the surface smoothness of the film. The increase of nano-silica content in the composite film composed of polypropylene and silica changed the surface shape from microporous to microglobular, which led to increasing the contact angle and showed the super-hydrophobic surface property.

3-Dimensional ${\mu}m$-Scale Pore Structures of Porous Earth Materials: NMR Micro-imaging Study (지구물질의 마이크로미터 단위의 삼차원 공극 구조 규명: 핵자기공명 현미영상 연구)

  • Lee, Bum-Han;Lee, Sung-Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.4
    • /
    • pp.313-324
    • /
    • 2009
  • We explore the effect of particle shape and size on 3-dimensional (3D) network and pore structure of porous earth materials composed of glass beads and silica gel using NMR micro-imaging in order to gain better insights into relationship between structure and the corresponding hydrologic and seismological properties. The 3D micro-imaging data for the model porous networks show that the specific surface area, porosity, and permeability range from 2.5 to $9.6\;mm^2/mm^3$, from 0.21 to 0.38, and from 11.6 to 892.3 D (Darcy), respectively, which are typical values for unconsolidated sands. The relationships among specific surface area, porosity, and permeability of the porous media are relatively well explained with the Kozeny equation. Cube counting fractal dimension analysis shows that fractal dimension increases from ~2.5-2.6 to 3.0 with increasing specific surface area from 2.5 to $9.6\;mm^2/mm^3$, with the data also suggesting the effect of porosity. Specific surface area, porosity, permeability, and cube counting fractal dimension for the natural mongolian sandstone are $0.33\;mm^2/mm^3$, 0.017, 30.9 mD, and 1.59, respectively. The current results highlight that NMR micro-imaging, together with detailed statistical analyses can be useful to characterize 3D pore structures of various porous earth materials and be potentially effective in accounting for transport properties and seismic wave velocity and attenuation of diverse porous media in earth crust and interiors.

Hydrophobic Organic/Inorganic Composite Films with 3D Hierarchical Nanostructured Surfaces (3D 계층적 나노구조화된 표면을 갖는 소수성 유/무기 복합 필름)

  • Seo, Huijin;Ahn, Jinseong;Park, Junyong
    • Composites Research
    • /
    • v.34 no.4
    • /
    • pp.264-268
    • /
    • 2021
  • In this study, we propose a method for fabricating hydrophobic coatings/films with three-dimensional (3D) hierarchical nanostructured organic/inorganic composite surfaces. An epoxy-based, large-area 3D ordered nanoporous template is first prepared through an advanced photolithography technique called Proximity-field nanoPatterning (PnP). Then, a hierarchically structured surface is generated by densely impregnating the template with silica nanoparticles with an average diameter of 22 nm through dip coating. Due to the coexisting micro- and nano-scale roughness on the surface, the fabricated composite film exhibits a higher contact angle (>137 degrees) for water droplets compared to the reference samples. Therefore, it is expected that the materials and processes developed through this study can be used in various ways in the traditional coating/film field.

Oxidative Desulfurization of Marine Diesel Using WOx/SBA-15 Catalyst and Hydrogen Peroxide (WOx/SBA-15 촉매와 과산화수소를 이용한 선박용 경유의 산화 탈황 연구)

  • Oh, Hyeonwoo;Kim, Ji Man;Huh, Kwang-Sun;Woo, Hee Chul
    • Korean Chemical Engineering Research
    • /
    • v.55 no.4
    • /
    • pp.567-573
    • /
    • 2017
  • In this work, tungsten oxide ($WO_x$) supported on SBA-15 (mesoporous silica) were prepared and applied for oxidative desulfurization of sulfur compounds in marine diesel containing about 230 ppmw of sulfur concentration. Prepared catalysts were examined by two steps; at first step, oxidation reaction carried out with hydrogen peroxide as oxidant and then the oxidized sulfur compounds were extracted by acetonitrile as solvent. Catalysts were characterized by using X-ray diffraction, X-ray fluorescence, X-ray photoelectron spectroscopy and $N_2$ adsorption-desorption isotherms. Tungsten oxide exists as monoclinic crystal system on SBA-15 and over about 10 wt% of the $WO_x$ loading took the form of multi-layers on SBA-15. The 13 wt% $WO_x$/SBA-15 catalyst exhibite highest activity, achieving about 76.3% sulfur removal in the reaction conditions, such as catalyst amount of 0.1 g, reaction temperature at $90^{\circ}C$, reaction time for 3 h and O/S molar ratio of 10. One time oxidation reaction is enough oxidize the sulfur compounds in marine diesel completely. The repetition experiment of extraction process indicated that sulfur removal could reach 94.4% after 5 times.

Catalytic Wet Air Oxidation by TiO2 Supported Mn-Ce Based Catalysts (Mn-Ce계/TiO2 촉매에 의한 아세트산의 습식산화 반응특성)

  • Park, K.S.;Park, J.W.;Kim, Y.J.;Yoon, W.L.;Park, J.S.;Rhee, Y.W.;Kang, Y.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.12
    • /
    • pp.2263-2273
    • /
    • 2000
  • Catalytic wet air oxidation of acetic acid over Mn-Ce based catalysts deposited on various supports ($SiO_2$, $TiO_2$, $ZrO_2$), $ZrSiO_4$, $ZrO_2(10wt%)/TiO_2$) have been carried out in high pressure microreactors. Also, promotional effects by small addition(O.5~1.0 wt%) of p-type semiconductors (CoO, $Ag_2O$, SnO) have been investigated. From the screening tests for initial activity ranking, both Mn(2.8)-Ce(7.2 wt%) and Ru(O.4)Mn(2.7)-Ce(6.9 wt%) supported on $TiO_2$ were selected as the promising reference candidates. In $Mn-Ce/TiO_2$ reference catalyst, addition of small amount of each p-type semiconductor (Co, Sn and Ag) resulted in activity promotional effect and the degree of the increase was in the following order: Co> Ag > Sn. Especially, $Mn-Ce/TiO_2$ promoted with 0.5 wt% Co gave the 2.6 folds activity increase compared to the reference case attributing to the surface area increase as well as synergy effect. In $Ru-Mn-Ce/TiO_2$ reference catalyst, only Co(1.0 wt%) promoted case showed a little reaction rate increase.

  • PDF