• 제목/요약/키워드: 니티놀

검색결과 16건 처리시간 0.02초

결핵성 기관-기관지 협착에서 제거형 니티놀 스텐트 삽입요법 -1례- (Retrievable Nitinol Stent for Treatment of Tuberculous Tracheobronchial Stenosis -A case report-)

  • 정봉규;김광택;박성민;선경;김형묵;이인성
    • Journal of Chest Surgery
    • /
    • 제33권1호
    • /
    • pp.107-111
    • /
    • 2000
  • Although a tracheal stent can be an option for inoperable tracheal stenoses there still are some troublesome side effects including overgranulation from foreign body irritation restenosis and patient's discomfort associated with the procedure. We report a successful case of a retrievable stent made of self-expandable 'shape memory' metal and polyurethane in a 24 year old female patient with respiratory distress and tight stenosis in the trachea and left main bronchus, The stent was inserted following a balloon dilatation and was successfully removed on the 7th days after the procedure. She regained a normal active life without any repiratory symptoms and a follow-up of 8 months showed satisfactory results.

  • PDF

전해가공을 이용한 Nitinol 형상기억합금의 그루브 패턴 가공특성에 관한 연구 (The Machining Characteristics of Groove Patterning for Nitinol Shape Memory Alloy Using Electrochemical Machining)

  • 신태희;김백겸;백승엽;이은상
    • 한국생산제조학회지
    • /
    • 제18권6호
    • /
    • pp.551-557
    • /
    • 2009
  • A development of smart materials is becoming a prominent issue on present industries. A smart material, included in functions, is needed for micro fabrication. A shape memory alloy(SMA) in a smart material is best known material. Ni-Ti alloy, composed of nikel and titanium is one of the best shape memory alloy(SMA). Nitinol SMA is used for a lot of high tech industry such as aero space, medical device, micro actuator, sensor system. However, Ni-Ti SMA is difficult to process to make a shape and fabrications as traditional machining process. Because nitinol SMA, that is contained nikel content more than titanium content, has similar physical characteristics of titanium. In this paper, the characteristics of ECM grooving process for nitinol SMA are investigated by experiments. The experiments in this study are progressed for power, gap distance and machining time. The characteristics are found each part. Fine shape in work piece can be found on conditions; current 6A, duty factor 50%, gap distance 15%, gap distance $15{\mu}m$, machining time 10min.

  • PDF

TiN/NiTi 2층형 박막의 두께 변화에 따른 물리적 특성 기초연구

  • 변인섭;양지훈;김성환;정재인
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2018년도 춘계학술대회 논문집
    • /
    • pp.132-132
    • /
    • 2018
  • NiTi 형상 기억 합금은 형상기억 효과 (Shape memory effect) 또는 초탄성 효과 (superelasticity effect)를 나타낸다고 알려져 있다. 대표적으로 Ni:Ti 조성비가 1:1을 갖는 NiTi(니티놀) 합금은 형상기억 및 초탄성 효과가 우수하여 기계 가공 공정뿐만 아니라 우수한 내마모성을 요구하는 공구에 사용하기 적합하다. 하지만 NiTi 박막은 합금과 같은 Damping capacity를 가지고 있지만 비교적 낮은 물리적 특성을 가지고 있다. 본 연구에서는 NiTi 박막의 낮은 물리적 특성을 향상시키기 위하여 TiN과 NiTi의 2층형 박막을 제조하고 각 층의 두께 변화를 조절하여 특성 향상에 대한 기초연구를 진행했다. 타겟은 NiTi (Ni:Ti=48.2:51.8 at.%) 합금 타겟과 Ti 타겟을 사용하였고, 시편과 타겟 간의 거리는 약 10cm 이며, 시편은 기초분석을 위한 SUS304, 물리적 특성 평가를 위한 초경 을 사용하였다. 초경은 실제 공구에서 사용하고 있는 Co함량이 10% 함유된 시편은 선정했다. 시편 전처리는 알코올과 아세톤으로 세척을 실시한 후 진공챔버에 장착하고 ${\sim}10^{-5}Torr$ 까지 진공배기를 실시하였다. 기판 정청은 글로우 방전 방식으로 약 800 V 전압에서 30분간 실시했다. 공정 가스는 Ar와 $N_2$ 혼합가스를 사용하였으며, UBM(Un-Balanced Magnetron) 스퍼터링 소스를 이용하여 2층형 박막을 제조했다. TiN과 NiTi 층의 두께 비율을 0.5, 1 그리고 2 로 변화시켜 코팅했으며, 박막의 총 두께는 약 ${\sim}3{\mu}m$ 이다. 기초분석은 FE-SEM을 통해 두께와 박막 비율을 확인 및 XRD 분석을 통해 박막 정성분성을 실시했다. 2층형 박막의 물리적 특성은 Nanoindentation test, AFM 및 ball on disc를 이용하여 평가했으며, 그 결과 두께 비율 변화에 따라 물리적 특성 변화가 나타남을 확인했다.

  • PDF

Eco-AZ91 MgH2의 반응열 제어에 미치는 촉매 분산 효과 (Effects of Catalyst Dispersion for Reaction Energy Control on Eco-AZ91 MgH2)

  • 이수선;석송;홍태환
    • 한국수소및신에너지학회논문집
    • /
    • 제34권6호
    • /
    • pp.631-640
    • /
    • 2023
  • This study selected Eco-AZ91 MgH2, which shows high enthalpy as a material for this purpose, as the basic material, and analyzed the change in characteristics by synthesizing TiNi as a catalyst to control the thermodynamic behavior of MgH2. In addition, the catalyst dispersion technology using graphene oxide (GO) was studied to improve the high-temperature aggregation phenomenon of Ni catalyst and to secure a source technology that can properly disperse the catalyst. XRD, SEM, and BET analysis were conducted to analyze the metallurgical properties of the material, and TGA and DSC analysis were conducted to analyze the dehydrogenation temperature and calorific value, and the correlation between MgH2, TiNi catalyst, and GO reforming catalyst was analyzed. As a result, the MgH2-5 wt% TiNi at GO composite could lower the dehydrogenation temperature to 478-492 K due to the reduction of the catalyst aggregation phenomenon and the increase in the reaction specific surface area, and an experimental result for the catalyst dispersion technology by GO could be ensured.

초탄성 니티놀 형상기억합금의 준정적 거동에 대한 수치해석적 재현 (Numerical Simulation for the Quasi-static Behavior of Superelastic Nitinol Shape Memory Alloys (SMAs))

  • 허종완
    • 한국강구조학회 논문집
    • /
    • 제27권6호
    • /
    • pp.493-501
    • /
    • 2015
  • 초탄성 형상기억합금은 상온에서 소성 범위를 초월하여 상당량의 변위를 가하더라도 하중을 제거 후에 별도의 열처리를 가하지 않더라도 원상태로 복원이 가능한 특수한 금속이다. 자동치유가 가능한 형상기억합금의 특유한 재료적인 성질로 인하여 구조물에서 변위가 집중되는 부분에 기존에 주로 사용되는 강재를 대체하여 이러한 특수 합금 재료가 널리 활용되기 시작하였다. 하지만 형상기억합금을 활용한 구조물의 기본적인 설계와 성능 검증을 하기 위해 고등적인 구조해석에 필요한 재료적인 모델의 개발과 연구의 노력이 부족하기 때문에 본 재료를 현장에서 적용하기에는 여전히 많은 제약을 받고 있다. 따라서 본 연구에서는 초탄성 형상기억합금의 거동을 수치해석적인 방법으로 재현이 가능한 구성적인 재료 모델의 소개와 프로그램 코딩에 대하여 다루고자 한다. 또한 본 연구에서 제시된 재료 모델의 타당성을 입증하기 위하여 수치해석적으로 재현된 물리적인 거동을 실험에서 얻어진 데이터에 비교 및 보정 작업도 수행하였다. 아울러 이러한 재료 모델로 구현된 초탄성 형상기억합금의 물리적인 물성치를 구조 해석에 적용하고 정확성을 검증하여 현장 적용의 타당성을 입증하였다.

표면 연마 방법에 따른 니티놀 잔류응력 분석 (Analysis of residual stress of Nitinol by surface Polishing Method)

  • 정지선;홍광표;김운용;조명우
    • Design & Manufacturing
    • /
    • 제11권2호
    • /
    • pp.51-56
    • /
    • 2017
  • Nitinol, a shape memory alloy (SMA), is manufactured from titanium and nickel and it used in various fields such as electrical applications, micro sensors. It is also recommended as a material in medical for implant because it has excellent organic compatibility. Nitinol is intended to be inserted into the human body, products require a high-quality surface and low residual stress. To overcome this problems, explore electrolyte polishing (EP) is being explored that may be appropriate for use with nitinol. EP is a particularly useful machining method because, as a non contact machining method, it produces neither machining heat nor internal stress in the machined materials. Sandpaper polishing is also useful machining method because, as a contact machining method, it can easily good surface roughness in the machined materials. The electrolyte polishing (EP) process has an effect of improving the surface roughness as well as the film polishing process, but has a characteristic that the residual stress is hardly generated because the work hardened layer is not formed on the processed surface. The sandpaper polishing process has the effect of improving the surface roughness but the residual stress remains in the surface. We experimented with three conditions of polishing process. First condition is the conventional polishing. Second condition is the electrochemical polishing(EP). And Last condition is a mixing process with the conventional polishing and the EP. Surface roughness and residual stress of the nitinol before a polishing process were $0.474{\mu}mRa$, -45.38MPa. Surface roughness and residual stress of the nitinol after mixing process of the conventional polishing and the EP were $1.071{\mu}mRa$, -143.157MPa. Surface roughness and residual stress of the nitinol after conventional polishing were $0.385{\mu}mRa$ and -205.15MPa. Surface roughness and residual stress of sandpaper and EP nitinol were $1.071{\mu}mRa$, -143.157MPa. The result shows that the EP process is a residual stress free process that eliminates the residual stress on the surface while eliminating the deformed layer remaining on the surface through composite surface machining rather than single surface machining. The EP process can be used for biomaterials such as nitinol and be applied to polishing of wafers and various fields.