• Title/Summary/Keyword: 니켈 파우더

Search Result 5, Processing Time 0.02 seconds

Microstructures and Mechanical Properties of GTD 111DS Welds by $CO_2$ Laser Welding ($CO_2$ 레이저를 이용한 GTD111DS 초합금 용접부의 미세조직과 기계적 성질)

  • Lee, Tack-Woon;Yang, Sung-Ho;Kim, Sang-Hun
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.108-108
    • /
    • 2009
  • Precipitation hardening nickel base alloys strengthened by intermetallic compounds are extensively used to manufacture on the components of the hot section of gas turbine engines. To ensure structural stability and maintenance of strength properties for a long time, nickel alloys are normally subjected to complex alloying with elements to form ${\gamma}'$(gamma prime). Such alloys have a limited weldability, are normally welded in high temperature. However, laser welding have a merit that applies in room temperature as easy control of welding parameter and heat input. In this study, $CO_2$ laser welding is applied on STS304 plate with good ductility and precipitation hardening nickel base alloy (GTD111DS) used blade material. Also, several welding parameters are applied on powder, power and travel speed. There are no cracks in Rene 80 and IN 625 powder when STS304 plate is used. But IN 625 powder has no cracks and Rene 80 have some cracks in welds with GTD111DS substrate. Adjusting of welding parameter is tried to apply Rene 80 having a good strength compare to IN 625. In the result of adjusted welding parameter, optimized welding parameters are set with low power, low feed rate and high welding speed. Tensile strength of GTD111DS substrate with Rene 80 powder is same and over than the one of base metal in room temp and high temp($760^{\circ}C$).

  • PDF

Preparation of hydrogen membrane support: Effect of surface roughness on the hydrogen permeance (니켈파우더 제조방법에 따른 분리막 지지체 표면 및 연마 특성 연구)

  • Park, Jin-Woo;Lee, Sung-Wook;Lee, Chun-Boo;Hwang, Kyung-Ran;Park, Hye-Jeong;Park, Jong-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.115.1-115.1
    • /
    • 2010
  • 수소 에너지는 인류가 당면해 있는 대체에너지와 환경문제를 해결할 수 있는 방법 중 하나이며, 전 세계적으로 수소 제조/정제 기술에 대한 연구가 활발히 진행 중이다. 본 연구에서는 수소 제조/정제 분야 중 분리막에 대한 연구를 진행하였다. 분리막 지지체로 는 SUS, Ceramic, Nikel 등의 소재들이 사용되고 있지만 본 연구에서는 수소취성이 강하고 제조원가가 낮으며 가공 성형하기 쉬운 Nikel을 사용하였다. 분리막 지지체는 Nikel Powder 전처리 과정을 통해 불순물을 제거하였으며, 몰드에서 가압 성형 후 기계적 강도 증가를 위해 고온에서 짧은 시간동안 소성 하였다. 분리막의 $H_2$ Flux 향상을 위한 방법으로 지지체 표면 조도 증가를 위해 polishing을 하였다. 표면 조도 특성은 polishing 조건에 따라 많은 차이점이 있기에, 다양한 조건에서 polishing한 분리막 지지체의 표면 조도를 SEM 분석을 통하여 지지체로서의 $H_2$ Flux향상에 어떠한 영향이 있는가를 알아보았다.

  • PDF

Carbon Composite Material Using Nickel Nano-Powder Impregnation Research on Electromagnetic Shielding Effect (니켈나노파우더 함침기법을 이용한 탄소복합소재의 전자파차폐 효과에 관한 연구)

  • Seo, Kwang-Su;Kwac, Lee-Ku
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.12
    • /
    • pp.49-55
    • /
    • 2020
  • In order to improve the electromagnetic shielding rate of Carbon Fiber (CF), it was produced using the nickel nano-powder impregnating method. Using two types of nickel powder having thicknesses of 50 ㎛ and 100 ㎛, and a thermoplastic elastomer resin, a compound containing 10-20% nickel content was mixed and then manufactured through an extruder. The CF coated with the compound was woven and manufactured using a 1-ply specimen. The final nickel content of the specimen was verified using TGA and the distribution of nickel powder on the CF surface was verified using SEM. The metal shows a high shielding rate in the low-frequency band, but the shielding rate decreases at higher-frequency bands. The CF improves at the higher frequency band, and metals reflect electromagnetic waves while carbon absorbs electromagnetic waves. The study of shielding materials, which are stronger and lighter than metal, by using CF lighter than metal and enabling the shielding rate from low-frequency band to high-frequency band, confirmed that the larger the area coated with nickel nano-powder, the better the electromagnetic shielding performance. In particular, CF coated with a thickness of 100 ㎛ has a shielding rate similar to that of copper and can also be used for EV/HEV automotive cables and other applications in the future.

On the Leakage Safety Analysis of $9\%$ Nickel Type LNG Storage Tank with Thermal Resistance Effects (열저항 효과를 고려한 $9\%$ 니켈강재식 LNG 저장탱크의 누설 안전성에 관한 연구)

  • Kim C.K.;Cho S.H.;Suh H.S.;Hong S.H.;Lee S.R.;Kim Y,G.;Kwon B.K.
    • Journal of the Korean Institute of Gas
    • /
    • v.9 no.1 s.26
    • /
    • pp.1-8
    • /
    • 2005
  • In this study, the FE analysis has been presented for the leakage safety of $9\%$ nickel type LNG storage tank based on the thermal resistance effects between insulation panels, comer protection and prestressed concrete(PC) structures. The FEM calculated results show that the leakage safety of fiber glass blanket, perlite powder and cellular glass insulators does not guarantee any more due to a strength failure of the insulation structure. But the corner protection and PC structure of outer tank may delay or sustain the leaked LNG of 10 days even though the inner tank and insulation structure are simultaneously failed. This means that $9\%$ nickel steel type LNG storage tank may be safe because of a high strength of the corner protection and outer tank structures.

  • PDF

Effects of Ni layer as a diffusion barrier on the aluminum-induced crystallization of the amorphous silicon on the aluminum substrate (알루미늄 기판 상의 Ni layer가 a-Si의 AIC(Aluminum Induced Crystallization)에 미치는 영향)

  • Yun, Won-Tae;Kim, Young-Kwan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.2
    • /
    • pp.65-72
    • /
    • 2012
  • Aluminum induced crystallization of amorphous silicon was attempted by the aluminum substrate. To avoid the layer exchange between silicon and aluminum layer, Ni layer was deposited between these two layers by sputtering. To obtain the bigger grain of the crystalline silicon, wet blasted silica layer was employed as windows between the nickel and a-Si layer. Ni obtained after the annealing treatment at $520^{\circ}C$ was found to be a promising material for the diffusion barrier between silicon and aluminum. One way to obtain bigger grain of crystalline silicon layer applicable to solar cell of higher performance was envisioned in this investigation.