• Title/Summary/Keyword: 능주

Search Result 13, Processing Time 0.02 seconds

Cho Gwang-jo's Pure Conscience and Grief (조광조 도학의 이념적 순정성과 감성의 문제)

  • Lee, Sang Seong
    • The Journal of Korean Philosophical History
    • /
    • no.30
    • /
    • pp.7-36
    • /
    • 2010
  • Cho Gwang-jo(趙光祖, 1482-1519) was the moralist who had the purest conscience and aimed the devoted politics among many fellow Confucianists of Chosun Dynasty. He even criticized his teacher who was in his late forty years for not being able to control his emotions when he was just a teenager. That is to say, he was the one who have kept his cold reasons for entire life. Nevertheless, as mentioned before, Cho Gwang-jo was very faithful to his emotions and also very honest. We find that he was definitely emotional. He demanded to change the relationship between the king and the courtier to the one between the father and the son with humane communication. He expressed his mind and emotion he had used to have at the moment of his death: he loved his king just as he loved his father. However, the king, Joongjong, was indifferent at the human's emotion as if he was a senseless figure. That was the saddest frustration and grief he had. However, his grief did not remained just as the mere grief but again survived as the hope for the survivors and descendants with the big echo. In this respect, his gried did not just end as the grief but it can be said that it even revived itself as the strength and courage. Then, Cho Gwang-jo's life as a human being was never a failure. Moreover, his grief and agony did not just remained as the vain emotion and sadness.

Geochemical Characteristics of Stream Sediments Based on Bed Rocks in the Cheongpung Area (기반암에 따른 청풍지역 하상퇴적물의 지구화학적 특성)

  • Park, Young-Seog;Park, Dae-Woo;Kim, Jong-Kyun;Song, Yeung-Sang;Lee, Jang-Jon
    • Economic and Environmental Geology
    • /
    • v.39 no.6 s.181
    • /
    • pp.675-687
    • /
    • 2006
  • The purpose of this study is to determine the geochemical characteristics of the stream sediments in the Cheongpung area. So that we can understand the natural background and predict the prospects of geochemical disaster, if any. We collected the stream sediments samples by wet sieving along the primary channels and slow dried the collected samples in the laboratory and ground them to pass a 200 mesh using an alumina mortar and pestle for chemical analysis. Miner-alogical characteristics, major, trace and rare earth elements were determined by XRD, XRF, ICP-AES and NAA analysis methods. For geochemical characteristics on the geological group of stream sediments, the studied area was grouped into granitic gneiss area, metatectic gneiss area, Dado tuff area, Yuchi conglomerate area, and Neungju flow area in the Cheongpung area. Contents of major elements for the stream sediments in the Cheongpung area were $SiO_2\;47.31{\sim}72.81\;wt.%,\;A1_2O_3 \;11.26{\sim}21.88\;wt.%,\;Fe_2O_3\;2.83{\sim}8.39\;wt.%,\;CaO\;0.34{\sim}7.54\;wt.%,\;MgO\; 0.55{\sim}3.59\;wt.%,\;K_2O\;1.71{\sim}4.31\;wt.%,\;Na_2O\;0.56{\sim}2.28\;wt.%,\;TiO_2\;0.46{\sim}1.24\;wt.%,\;MnO\;0.04{\sim}0.27\;wt.%,\;P_2O_5\;0.02{\sim}0.45\;wt.%$. The con-tents of trace and rare earth elements for the stream sediments were $Ba\;700ppm{\sim}8990ppm,\;Be\;1.0{\sim}3.50ppm,\;Cu\;6.20{\sim}60ppm,\;Nb\;12{\sim}28ppm,\;Ni\;4.4{\sim}61ppm,\;Pb\;13{\sim}34ppm,\;Sr\;65{\sim}787ppm,\;V\;4{\sim}98ppm,\;Zr\;32{\sim}164ppm,\;Li\;21{\sim}827ppm,\;Co\;3.68{\sim}65ppm,\;Cr\;16.7{\sim}409ppm,\;Cs\;2.72{\sim}37.1ppm,\;Hf\;4.99{\sim}49.2ppm,\;Rb\;71.9{\sim}649ppm,\;Sb\;0.16{\sim}5.03ppm,\;Sc\;4.97{\sim}52ppm,\;Zn\;26.3{\sim}375ppm,\;Ce\;60.6{\sim}373ppm,\;Eu\;0.82{\sim}6ppm,\;Yb\;0.71{\sim}10ppm$.

Development of Correction Formulas for KMA AAOS Soil Moisture Observation Data (기상청 농업기상관측망 토양수분 관측자료 보정식 개발)

  • Choi, Sung-Won;Park, Juhan;Kang, Minseok;Kim, Jongho;Sohn, Seungwon;Cho, Sungsik;Chun, Hyenchung;Jung, Ki-Yuol
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.1
    • /
    • pp.13-34
    • /
    • 2022
  • Soil moisture data have been collected at 11 agrometeorological stations operated by The Korea Meteorological Administration (KMA). This study aimed to verify the accuracy of soil moisture data of KMA and develop a correction formula to be applied to improve their quality. The soil of the observation field was sampled to analyze its physical properties that affect soil water content. Soil texture was classified to be sandy loam and loamy sand at most sites. The bulk density of the soil samples was about 1.5 g/cm3 on average. The content of silt and clay was also closely related to bulk density and water holding capacity. The EnviroSCAN model, which was used as a reference sensor, was calibrated using the self-manufactured "reference soil moisture observation system". Comparison between the calibrated reference sensor and the field sensor of KMA was conducted at least three times at each of the 11 sites. Overall, the trend of fluctuations over time in the measured values of the two sensors appeared similar. Still, there were sites where the latter had relatively lower soil moisture values than the former. A linear correction formula was derived for each site and depth using the range and average of the observed data for the given period. This correction formula resulted in an improvement in agreement between sensor values at the Suwon site. In addition, the detailed approach was developed to estimate the correction value for the period in which a correction formula was not calculated. In summary, the correction of soil moisture data at a regular time interval, e.g., twice a year, would be recommended for all observation sites to improve the quality of soil moisture observation data.