• Title/Summary/Keyword: 능동 열 제어

Search Result 48, Processing Time 0.024 seconds

Active Shape Control of Composite Beam Using Shape Memory Alloy Actuators (형상기억합금 작동기를 이용한 복합재 보의 능동 형상 제어)

  • Yang, Seung-Man;Roh, Jin-Ho;Han, Jae-Hung;Lee, In
    • Composites Research
    • /
    • v.17 no.4
    • /
    • pp.18-24
    • /
    • 2004
  • In this paper, active shape control of composite structures actuated by shape memory alloy (SMA) wires is presented. The thermo-mechanical behaviors of SMA wires were experimentally measured. Hybrid composite structures were established by attaching SMA actuators on the surfaces of graphite/epoxy composite beams using bolt-joint connectors. SMA actuators were activated by phase transformation, which induced by temperature rising over austenite finish temperature. In this paper, electrical resistive heating was applied to the hybrid composite structures to activate the SMA actuators. For (aster and more accurate shape/deflection control of the hybrid composite structure, PID feedback controller was designed from numerical simulations and experimentally applied to the SMA actuators.

Reactive Power Circulation based Active Thermal Control for Paralleled Power Converters for Wind Turbine (풍력발전용 병렬형 컨버터를 위한 무효전력순환 기반 능동 열 제어기법)

  • Ko, Youngjong
    • Proceedings of the KIPE Conference
    • /
    • 2020.08a
    • /
    • pp.251-252
    • /
    • 2020
  • 화석연료 사용으로 발생하는 환경문제 대처방안으로 풍력 등 신재생 에너지원 사용의 필요성이 강조되고 있으며, 이러한 사회적 요구에 따라 신재생 에너지 발전 시스템의 대용량화 추세에 있다. 시스템 대용량화에 있어 안정적인 에너지 발전과 공급을 위해 전력변환장치의 신뢰성 향상이 필요하다. 특히, 풍력발전시스템의 경우 돌풍 등 일정하지 않은 풍속으로 인하여 전력변환장치의 잦은 고장이 발생하고, 이는 전체 시스템의 신뢰성 결정에 주된 영향을 미친다. 본 논문에서는 병렬형 전력변환장치에서 높은 고장률을 보이는 스위칭 소자의 열적 스트레스를 줄이기 위한 무효전력순환 기반 능동 열 제어기법을 제안한다. 제안한 기법의 동작특성을 이론적으로 분석하고, 열 회로망 시뮬레이션을 통해 그 영향을 검증한다.

  • PDF

Effect of Damkohler Number on Vortex-Heat Release Interaction in a Dump Combustor (덤프 연소기내의 와류-열방출의 관계에 대한 Damkohler 수의 영향)

  • Yu Kenneth H;Yoon Youngbin;Ahn Kyubok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.137-140
    • /
    • 2004
  • Oscillating heat release associated with periodic vortex-flame interaction was investigated experimentally. Turbulent jet flames were stabilized with recirculating hot products in a dump combustor, and large-scale periodic vortices were imposed into the jet flame by acoustic forcing. Forcing frequencies and operating parameters were adjusted to simulate unstable combustor operation in practical combustors. The objectives were to characterize vortex-heat release interaction that leads to unwanted heat release fluctuations and to identify the proper fuel injection pattern that could be used for actively suppressing such fluctuations. Phase-resolved CH* chemiluminescence and schlieren images were used as diagnostic tools. The results were compared at corresponding phases of vortex shedding cycle.

  • PDF

THE ORBITAL THERMAL ANALYSIS OF HAUSAT-2 AND ITS THERMAL CONTROL SUBSYSTEM PRELIMINARY DESIGN (HAUSAT-2의 궤도 열해석과 열제어계의 예비설계)

  • Lee Mi-Hyeon;Kim Dong-Woon;Chang Young-Keun
    • Bulletin of the Korean Space Science Society
    • /
    • 2005.04a
    • /
    • pp.129-132
    • /
    • 2005
  • This paper describes BAUSAT-2 orbital thermal analysis and preliminary design of thermal control subsystem. To design thermal control subsystem of HAUSAT-2, we have considered active & passive thermal control method based on basic theory and themal equilibrium equation. Using this result, suitable thermal control method and material have been selected. We have designed thermal control subsystem based on analysis of HAUSAT-2's thermal environments on sun synchronous orbit with altitude 650km, inclination $98^{\circ}$ and thermal distribution and range expectation of each HAUSAT-2's surface. Thermal analysis consists of system level, box level and board level analysis. We have completed system level and box level analysis. Till now, board level analysis of main heat dissipation board in progress. Thermal control subsystem has designed according to thermal analysis result. This design is to maintain all of the HAUSAT-2 components within the allowable temperature limits. In future, STM

  • PDF

Thermal and Flow Analysis of a Driving Controller for Active Destruction Protections (능동 파괴 방호 구동제어기의 열 유동 해석)

  • Ryu, Bong-Jo;Oh, Bu-Jin;Kim, Youngshik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.235-242
    • /
    • 2017
  • A driving controller for active destruction protections can be applied to machinery, aerospace and military fields. In particular, this controller can be used to track and attack enemy flying objects through the active control. It is important to ensure reliability of the driving controller since its operation should be kept with precision to the target point. The temperature of the environment where the driving controller is used is about -32 C ~ 50 C (241~323 ). Heat generated in the driving controller should be maintained below a certain threshold (85 C (358 )) to ensure reliability; therefore, the study and analysis of the heat flow characteristics in the driving controller are required. In this research, commercial software Solid-Works Flow Simulation was used for the numerical simulation assuming a low Reynolds number turbulence model and an incompressible viscous flow. The goal of this paper is to design the driving controller safely by analyzing the characteristics of the heat flow inside of the controller composed of chips or boards. Our analysis shows temperature distributions for boards and chips below a certain threshold.

Design Verification of Thermal Control Subsystem for EOS-C Ver.3.0 using STM Thermal Vacuum Test Result (STM 열진공 시험 결과를 이용한 EOS-C Ver.3.0 열제어계 설계 검증)

  • Chang, Jin-Soo;Yang, Seung-Uk;Jeong, Yun-Hwang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.12
    • /
    • pp.1232-1239
    • /
    • 2010
  • A high-resolution electro-optical camera (EOS-C Ver.3.0), the mission payload of an Earth observation satellite, is under development in Satrec Initiative. We designed this system to give improved thermal performance compared with the EOS-C Ver.2.0 which is the main payload of DubaiSat-1 by optimizing the active and passive thermal control design. We developed the Structural-Thermal Model (STM) and verified the design margin by performing the qualification level thermal vacuum test. We also conducted the verification of its Thermal Mathematical Model (TMM) through the thermal balance test. As a result, it was confirmed that TMM faithfully represents the thermal characteristics of the EOS-C Ver.3.0.

Development and Performance Validation of Thermal Control Subsystem for Earth Observation Small Satellite Flight Model (지구관측 소형위성 비행모델의 열제어계 개발 및 성능 검증)

  • Chang, Jin-Soo;Jeong, Yun-Hwang;Kim, Byung-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.12
    • /
    • pp.1222-1228
    • /
    • 2008
  • A small satellite, DubaiSat-1 FM(Flight Model), which is based on SI-200 standard bus platform and scheduled to be launched in 2008, is being developed by Satrec Initiative and EIAST(Emirates Institution for Advanced Science and Technology). The TCS(Thermal Control Subsystem) of DubaiSat-1 FM has been designed to mainly utilize passive thermal control in order to minimize power consumption, but the active control method using heaters has been applied to some critical parts. Also, thermal analysis has been performed for DubaiSat-1's mission orbit using a thermal analysis model. The thermal design is modified and optimized to satisfy the design temperature requirements for all parts according to the analysis result. The thermal control performance of DubaiSat-1 FM is verified by thermal vacuum space simulation, consisting of thermal cycling and thermal balance test. Also, to validate the thermal modeling of DubaiSat-1 FM, comparison of test results with analysis has been performed and model calibration has been completed.

Design and Development of Thermal Control Subsystem for an Electro-Optical Camera System (전자광학카메라 시스템의 열제어계 설계 및 개발)

  • Chang, Jin-Soo;Yang, Seung-Uk;Jeong, Yun-Hwang;Kim, Ee-Eul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.8
    • /
    • pp.798-804
    • /
    • 2009
  • A high-resolution electro-optical camera system, EOS-C, is under development in Satrec Initiative. This system is the mission payload of a 400-kg Earth observation satellite. We designed this system to give improved opto-mechanical and thermal performance compared with a similar camera system to be flown on the DubaiSat-1 system. The thermal control subsystem (TCS) of the EOS-C system uses heaters to meet the opto-mechanical requirements during in-orbit operation and it uses different thermal coating materials and multi-layer insulation (MLI) blankets to minimize the heater power consumption. We performed its thermal analysis for the mission orbit using a thermal analysis model and the result shows that its TCS satisfies the design requirements.

Direct Load Control Using Active Database (능동 데이터베이스를 이용한 직접부하제어)

  • Choi, Sang-Yule;Kim, Hak-Man
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.5
    • /
    • pp.107-115
    • /
    • 2006
  • The existing DLC system functionally has two defects. One is it has to be controlled by operators whenever customer's portion of loads are increased more than predefined objected load. Therefore, it may be possible for propagating uncontrolled loads if operators make a mistake. The other one is that currently used DLC algorithm is usually focused on ON/OFF load control not concerning about reliving participated customer's inconvenience. Therefore, that is a major obstacle to attract customer participating in demand response program. This paper represents direct load control system using active database. By using active database, DLC system can control customer's load effectively without intervening of operator. And by using dynamic programming based on the order of priority for DLC algorithm, it is possible to maximize participating customer's satisfaction.