• Title/Summary/Keyword: 능동텐던

Search Result 2, Processing Time 0.021 seconds

Optimal Active Seismic Control of Structures with Optimum Location of Active Controllers (제어기의 최적위치선정을 고려한 구조물의 최적 능동지진제어)

  • Cho, Chang-Geun;Kwon, Joon-Myoung;Park, Tae-Hoon;Park, Moon-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.5
    • /
    • pp.179-189
    • /
    • 2008
  • The object of this study is to develope a program with proposed numerical techniques for an optimal seismic control of structures using active tendon systems. Ricatti closed-loop algorithm has been applied to control the active tendon systems with time-delay problem. The optimal control is formulated as an optimization problem which is finding optimal weighting matrices by minimizing the quadratic performance index by SUMT. In order to find the optimal location of active tendons in structures, controllability index has been introduced. From numerical examples, the current optimal control technique with optimal location of tendons was suitable to control the seismic response of structures.

Optimization of Active Tendon Controlled Structures by Efficient Solution of LQR Control Gain (LQR 제어이득의 효율적 산정에 의한 능동텐던 구조물의 최적화)

  • Cho, Chang-Geun;Kyun, Jun-Myong;Jung, In-Kju;Park, Moon-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.4
    • /
    • pp.73-80
    • /
    • 2008
  • The objective of current study is to develop an optimization technique for the seismic actively controlled building structures using active tendon devices by an efficient solution of LQR control gain. In order to solve the active control system, the Ricatti closed-loop algorithm has been applied, and the state vector has been formulated by the transfer matrix and solved by a numerical technique of the trapezoidal rule. The time-delay problem has been also considered by phase compensation. To optimize the performance index, the ratio of the weighted matrix is the design variable, allowable story drift limits of IBC 2000 and tendon forces have been applied as restraint conditions, and the optimum control program has been developed with the algorithm of the SUMT technique. In examples of the optimization problem of eight stories shear buildings, it is evaluated that the optimum controlled building is more suitable in the control of earthquake response than the uncontrolled system and can reduce the performance index to compare with the controlled system with a constant ratio of the weighted matrix.

  • PDF