• Title/Summary/Keyword: 능동적 진동제어

Search Result 149, Processing Time 0.025 seconds

A method to generate virtual intensity at arbitrary position: Methodology and its physical meanings (임의의 위치에 가상 인텐시티 형성 방법: 방법론과 그 물리적 의미)

  • 최정우;김양한
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.652-657
    • /
    • 2003
  • This paper proposes a method to generate virtual intensity field in space. The sound field of a zone enclosing the listener position is controlled to have maximum acoustic intensity to the desired direction. In order to control acoustic intensity of a zone, space-averaged active intensity is introduced. The ratio of space-averaged active intensity and control effort is defined as a cost function and expressed as a function of source control signals. It is shown that the cost function represents radiation efficiency of multiple sources. The control signals maximizing the cost function is found through eigenvalue analysis. The proposed method is verified by numerical simulations performed in free field condition, and the results provide a relation between wavelength and the size of controllable intensity field.

  • PDF

On the Calibration of Impact Hammer Sensitivity (충격 해머의 감도보정)

  • 한상보
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1991.04a
    • /
    • pp.71-74
    • /
    • 1991
  • 구조물의 진동특성을 파악하기 위한 실험적 모우드 해석법에서 기진력을 제 공하는 한 방법으로 힘 측정기가 부착된 해머를 이용한 충격시험기법이 널 리 사용되고 있다. 충격해머 시험의 유용성은 기진력의 에너지가 정현파 기 진력의 경우처럼 특정 주파수대에 산재해 있는 것이 아니라 가용 주파수 영 역내에 연속적으로 분포해 있다는 점이며 이러한 충격력은 가용 주파수 범 위내에 있는 모든 고유진동형을 여가시킬 수 있다는 장점이 있다. 충격헤머 가 가지고 있는 동적특성은 구조물을 가진시키는 선형충격량의 크기를 결정 하며, 이는 다시 충격력의 크기와 가용 주파수 범위를 결정하게 된다. 일반 적으로 가진주파수 범위는 해머의 질량에 반비례하고 충격해드의 경도에 비 례하는 것으로 알려져 있다. 해머의 질량 자체가 충격력의 크기를 좌우하기 도 하므로, 가진력의 크기를 고려하여 해머의 질량이 선택되며 충격헤드는 충격시간을 조절하기 위하여 적절히 선택된다. 충격해머에 장착된 힘측정기 의 감도는 해머질량과 충격헤드의 질량 변화에 영향을 받게 되는데, 충격 시 험시 측정되는 값은 해머에 부착되어 있는 힘측정기에 가해지는 힘인 반면 구조물에 가해지는 기진력은 충격해드와 구조물사이에 발생되는 힘이다. 이 두 힘의 비는 해머 및 충격해드의 질량효과에 따라 좌우된다. 주어진 충격시 험에서 충격해머의 질량효과를 정확히 조건에 따라 감도보정을 해 주어야 한다. 충격해머의 감도보정에 대해서는 문헌[2]에 잘 나타나 있다. 본 논문에 서는 전압감도에 미치는 영향을 파악하고자 질량 효과를 고려한 수학적 모 형을 제시하고 그 모형의 타당성을 실험을 통해 검정하고자 한다.방법 을 제시하였다. 이와 아울러 제어계의 환경변화에 따른 파라메타의 변화에 적응적으로 응답이 가능해야 하는 적응 소음제어 시스템에서, 음향궤환과 함 께 필히 고려해야 하는 부가적인 전달함수의 영향을 고려한 능동 소음제어 에 대해 연구하였다. 경량화 추세에 따라 지반이나 케이싱이 경량이거나 유연하여 회전축과 동적으로 연성된 경우 회전축-베어링-지반으로 이루어진 2중구조의 회전축 계 동특성을 해석할 수 있는 프로그램을 개발하므로서 회전 기계류의 진동 전반에 걸친 문제점에 대한 그 원인과 현상을 명확히 분석하여 국내의 전기 계류의 보다 신뢰성있는 설계 및 제작자료를 확보하는데 기여할 수 있게 하 였다.존의 small molecular Gd-chelate에 비해 매우 큼을 알 수 있었다. MnPC는 간세포에 흡수된 후 담도계로 배출되는 간특이성 조영제임을 확인하였다. 장비 내에서 반복 시행한 평균값의 차이는 대체적으로 유의한 차이가 없었으나, 다른 장비에서 반복 시행한 장비간의 사이에는 유의한 차이가 있는 경우가 더 많았다. 따라서 , MRS 검사를 소뇌나 뇌교의 어떤 절환에 적용하기 전에 각 장비 마다 정상 기준치를 반드시 얻은 후에 이상여부를 판 정하는 것이 필수적이라고 생각된다.EX> 이상이 적절한 진단기준으로 생각되었다. $0.4{\;}\textrm{cm}^3$ 이상의 좌우 부피차를 보이는 모든 증례에서 육안적으로도 해마위축이 뚜렷이 나타났다. 결론 : MR영상을 이용한 해마의 부피측정은 해마경화증 환자의 진단에 있어 육안적인 MR 진단이 어려운 제한된 경우에만 실제적 도움을 줄 수 있는 보조적인 방법으로 생각된다

  • PDF

Vibration Characteristics and Control of Smart Cantilever Beams Containing an Electro-Rheological Fluid An Experimental Investigation (전기 유동유체를 함유하는 지능외팔보의 진동특성 및 제어 실험적 고찰)

  • Choi, Seung-Bok;Park, Yong-Kun;Suh, Moon-Suk
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.7 s.94
    • /
    • pp.1649-1657
    • /
    • 1993
  • This paper reports on a proof-of-concept experimental investigation focused on evaluating the vibration characteristics and control of smart hollow cantilever beams filled with an electro-rheological(ER) fluid. The beams are considered to be of uniform viscoelastic materials and modelled as a viscously-damped harmonic oscillator. Electric field-dependent natural frequencies, loss factors and complex moduli are evaluated and compared among three different beams : two types of different volume fraction of ER fluid and one type of different particle concentration of ER fluid by weight. Modal characteristics of the beams are observed in both the absence and the presence of electric potentials. It is also shown that by constructing active control algorithm the removal of structural resonances and the suppression of tip deflection are obtained. This result provides the feasiblility of ER fluids as an active vibration control element.

Dynamic Modeling of Semi-active Squeeze Mode MR Damper for Structural Vibration Control (구조물의 진동 제어를 위한 압착식 MR 감쇠기의 동적 모델링)

  • Heo, Gwang-Hee;Jeon, Joon-Ryong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.2 s.54
    • /
    • pp.172-180
    • /
    • 2009
  • Normally in order to build a semi-active control system equipped with MR damper, the dynamic modeling of the damper is required to numerically predict its dynamic damping force and also its behavioral characteristics. For the dynamic modeling of the MR damper, this paper attempts to predict and evaluate its dynamic behavior by applying specifically both a power model and a Bingham model. Dynamic loading tests were performed on the squeeze type of damper specially designed for this research, and force-displacement hysteresis loops confirmed the effectiveness of the damper as a semi-active control device. In the meantime, in order to evaluate the effectiveness of each model applied, the model parameter for each model was identified. On the basis of the parameter, we derived the error ratio of the force-velocity relationship curve and the dynamic damping force, which was contrasted and compared with the experimental results of the squeeze type of damper. Finally, the squeeze type of MR damper developed in this research was proved to be valid as a semi-active control device, and also the evaluation of the two dynamic models showed they were working fine so that they were likely to be easily utilized to numerically predict the dynamic characteristics of any dampers with MR fluid as well as the squeeze type of MR damper.

An Experimental Study on the Development of a Cabin Noise Reduction System for Improving Ship Habitability (선박 거주성 향상을 위한 선실 소음 저감 시스템 개발에 관한 실험적 연구)

  • Young-Choul Seo;Deug-Bong Kim;Chol-Seong Kim
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.6
    • /
    • pp.620-627
    • /
    • 2023
  • Ship noise is one of the important factors for the living and health of seafarers, and ef orts to reduce ship noise are actively underway. There are two methods of noise reduction: passive noise Control (PNC) and active noise control (ANC). Unlike cars and airplanes, ANC is not widely used for noise reduction on ships. This study aimed to reduce the noise generated in the engine room by using soundproof panels and high-frequency vibration generators, as well as active noise control (ANC). For this purpose, an experimental model was made using an acrylic box, and the noise reduction effect was measured under four conditions. The experimental results are as follows: First, the soundproof panel had a noise reduction effect in all ranges from 55 dB to 85 dB. In the case of using a high-frequency vibration generator, there was no ef ect in the low noise range such as 55 dB(A), but there was a noise reduction effect in the high noise range such as 70.8 dB(A) and 85 dB(A).Second, when the soundproof panel and the high-frequency vibration generator were used simultaneously, the noise reduction ef ect was up to -2.2 dB(A). The results of this experiment were obtained from an experimental model made of acrylic, and they may be different from actual ships made of steel plate. In future studies, we plan to experiment using iron plate (considering the material, thickness, and structure) used in actual ships. We hope that this study will help to improve the living environment and health of seafarers on ships.

Robust control of a heave compensation system for offshore cranes considering the time-delay (시간 지연을 고려한 해상 크레인의 상하 동요 보상 시스템의 강인 제어)

  • Seong, Hyung-Seok;Choi, Hyeong-Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.1
    • /
    • pp.105-110
    • /
    • 2017
  • This paper introduces a heave compensation system for offshore crane when it subjected to unexpected disturbances such as ocean waves, tidal currents or winds and their external force. The dynamic model consists of a crane which is considered to behave in the same manner as a rigid body, a hydraulic driven winch, an elastic rope and a payload. To keep the payload from moving upwards and downwards, PD(Proportional-Derivative) control was applied by using linearization. In order to achieve a better performance, the sliding mode control and the nonlinear generalized predictive control algorithm was applied according to the time-delay. As a result, the oscillating amplitude of the payload was reduced by the control algorithm. Considering the time-delay involved in the system to be one second, nonlinear generalized predictive controller with a robust controller was a suitable control algorithm for this heave compensation system because it made the position of te payload reach the desired position with the minimum error. This paper presented a control algorithm using the robust control and its simulation results.

Experimental Verification of Semiactive Control Systems for Stay Cable Vibration (케이블 진동 감쇠를 위한 반능동 제어 장치 성능의 실험적 평가)

  • 장지은;정형조;정운;이인원
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.52-59
    • /
    • 2004
  • In this paper, the efficacy of the MR damper-based control systems for vibration suppression of stay cables has been experimentally investigated. The performance of the several control strategies for the semiactive control system, such as the clipped-optimal control, the Lyapunov stability theory-based control, the maximum energy dissipation and the modulated homogeneous friction, has been compared with that of the passive-type control systems employing MR dampers. To do this, the full-scale stay cable, which is the same as used for the in-service cable-stayed bridge in Korea, is considered. The acceleration and the displacement of the stay cable as well as the damping force of the MR damper are measured. The velocity of the cable at the damper location, which is needed for some control algorithms, is obtained by differentiating the measured displacement. The damping ratios of the cable system employing the MR damper, which can be estimated by the Hilbert transform-based method, shows effectiveness of each control strategy considered.

  • PDF

An Experimental Study for Active Vibration Control of Flexible Cantilever Beam (유연 외팔보의 능동 진동 제어를 위한 실험적 연구)

  • Choi, Soo-Young;Jung, Joon-Hong;Kang, Ki-Won;Park, Ki-Heon
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2251-2253
    • /
    • 2003
  • This paper is concerned with the active vibration control of flexible cantilever beam system using electromagnetic force actuator. The main objective of this paper is to propose the control algorithms and implement the experimental setups for active vibration control. Several control algorithms are proposed and implemented on the experimental setups to show their efficacy. These include a PID control design, an optimal $H_2$ control design, and a fuzzy PID control design. Effectiveness and performance of the designed controller were verified by both simulation and experiment results.

  • PDF

Rotor Hub Vibration Reduction Analysis Applying Individual Blade Control (개별 블레이드 조종을 통한 로터 허브 진동 저감 해석)

  • Kim, Taejoo;Wie, Seong-Yong;Kim, Minwoo;Lee, Dong-geon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.8
    • /
    • pp.649-660
    • /
    • 2021
  • Through analytical method based on S-76 model, the level of rotor hub vibration reduction was analyzed according to higher harmonic actuating by individual blade control. The higher harmonic actuating method for individual blades was divided into a method of generating an additional actuating force from the pitch-link in the rotating part and generating actuating force through the active trailing edge flap control of the blade. In the 100kts forward flight conditions, the hub load analysis was performed by changing the phase angle of 15 degree for the 2P/3P/4P/5P harmonic actuation for individual blades. Through the harmonic actuation results, the sensitivity of the rotor system according to the actuating conditions was analyzed, and the T-matrix representing the characteristics of the rotor system was derived based on this analysis result. And through this T-matrix, optimal higher harmonic actuating condition was derived to minimize hub vibration level for flight condition. In addition, the effect on the performance of the rotor system and the pitch-link load under minimum hub vibration condition, as well as the noise influence through the noise analysis were confirmed.

A CMOS Interface Circuit for Vibrational Energy Harvesting with MPPT Control (MPPT 제어 기능을 갖는 진동에너지 수확을 위한 CMOS 인터페이스 회로)

  • Yang, Min-Jae;Yoon, Eun-Jung;Yu, Chong-Gun
    • Journal of IKEEE
    • /
    • v.20 no.1
    • /
    • pp.45-53
    • /
    • 2016
  • This paper presents a CMOS interface circuit for vibration energy harvesting with MPPT (Maximum Power Point Tracking). In the proposed system a PMU (Power Management Unit) is employed at the output of a DC-DC boost converter to provide a regulated output with low-cost and simple architecture. In addition an MPPT controller using FOC (Fractional Open Circuit) technique is designed to harvest maximum power from vibration devices and increase efficiency of overall system. The AC signal from vibration devices is converted into a DC signal by an AC-DC converter, and then boosted through the DC-DC boost converter. The boosted signal is converted into a duty-cycled and regulated signal and delivered to loads by the PMU. A full-wave rectifier using active diodes is used as the AC-DC converter for high efficiency, and a DC-DC boost converter architecture using a schottky diode is employed for a simple control circuitry. The proposed circuit has been designed in a 0.35um CMOS process, and the designed chip occupies $915{\mu}m{\times}895{\mu}m$. Simulation results shows that the maximum power efficiency of the entire system is 83.4%.