• Title/Summary/Keyword: 능동적 동조방식의 수동제어

Search Result 2, Processing Time 0.015 seconds

A Semi-Active Control of the Combustion Instability in a Ducted Premixed Flame (덕트 형상 연소기의 연소불안정에 대한 Semi-Active Control)

  • Song, Jae-Cheon;Song, Jin-Kwan;Hwang, Jeong-Jae;Yoon, Young-Bin;Lee, Jong-Guen
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.11
    • /
    • pp.1131-1139
    • /
    • 2009
  • Combustion Instabilities are caused by a coupling between acoustic waves and unsteady heat release. They can be eliminated using passive controller such as a Helmholtz resonator. But, Helmholtz resonator is normally only effective over a narrow frequency range. In this work, Helmholtz resonator is applied for reducing the combustion oscillations and we vary the Helmholtz resonator volume using piston in oder to tune in the wide range of operating conditions. As the result, it is found that the dominant combustion oscillations can be largely reduced by optimizing the size of resonator volume. And, interesting relation for phase difference of dynamic pressure both combustor and the helmholtz resonator are presented in this paper. Also, we investigate semi-active control using Helmholtz equation and phase difference.

An Experimental Study on Feasibility of Actively Tuned Passive Control in a Liquid Ramjet Engine (액체 램제트 엔진에서 Actively Tuned Passive Control 가능성의 실험적 연구)

  • Song, Jae-Cheon;Song, Jin-Kwan;Hwang, Jeong-Jae;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.107-110
    • /
    • 2009
  • Combustion oscillations are caused by a coupling between acoustic waves and unsteady heat release. They can be eliminated using passive controller such as a helmholtz resonator. But, helmholtz resonator is normally only effective over a narrow frequency range. In this work, helmholtz resonator is applied for reducing the combustion oscillations and we vary the helmholtz resonator volume using piston in oder to tune in the wide range of operating conditions. As the result, it is found that the dominant combustion oscillations can be reduced by optimizing the size of resonator volume. Also, from these results, we investigate feasibility of actively tuned passive control

  • PDF