• Title/Summary/Keyword: 뉴런 추적

Search Result 5, Processing Time 0.019 seconds

Neuron Tracing- and Deep Learning-guided Interactive Proofreading for Neuron Structure Segmentation (뉴런 추적 및 딥러닝 기반의 대화형 뉴런 구조 교정 기법)

  • Choi, JunYoung;Jeong, Won-Ki
    • Journal of the Korea Computer Graphics Society
    • /
    • v.27 no.4
    • /
    • pp.1-9
    • /
    • 2021
  • Segmenting the compartments of neurons, such as axons, dendrites, and cell bodies, is helpful in the analysis of neurological phenomena. Recently, there have been several studies to segment the compartments through deep learning. However, this approach has the potential to include errors in the results due to noise in data and differences between training data and actual data. Therefore, in order to use these for actual analysis, it is essential to proofread the results. The proofreading process requires a lot of effort and time because an expert must perform it manually. We propose an interactive neuron structure proofreading method that can more easily correct errors in the segmentation results of a deep learning. This method proofread the neuron structure based on the characteristics of the neuron with structural consistency, so that a high-accuracy proofreading result can be obtained with less interaction.

Face Tracking Method based on Neural Oscillatory Network Using Color Information (컬러 정보를 이용한 신경 진동망 기반 얼굴추적 방법)

  • Hwang, Yong-Won;Oh, Sang-Rok;You, Bum-Jae;Lee, Ji-Yong;Park, Mig-Non;Jeong, Mun-Ho
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.2
    • /
    • pp.40-46
    • /
    • 2011
  • This paper proposes a real-time face detection and tracking system that uses neural oscillators which can be applied to access regulation system or control systems of user authentication as well as a new algorithm. We study a way to track faces using the neural oscillatory network which imitates the artificial neural net of information handing ability of human and animals, and biological movement characteristic of a singular neuron. The system that is suggested in this paper can broadly be broken into two stages of process. The first stage is the process of face extraction, which involves the acquisition of real-time RGB24bit color video delivering with the use of a cheap webcam. LEGION(Locally Excitatory Globally Inhibitory)algorithm is suggested as the face extraction method to be preceded for face tracking. The second stage is a method for face tracking by discovering the leader neuron that has the greatest connection strength amongst neighbor neuron of extracted face area. Along with the suggested method, the necessary element of face track such as stability as well as scale problem can be resolved.

A Study on Multiple Target Tracking Using Self-Organizing Neural Network (자기조직화 신경망을 이용한 다중 표적 추적에 관한 연구)

  • 서창진;김광백
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.6
    • /
    • pp.1304-1311
    • /
    • 2003
  • Target tracking in a real world situation is difficult problem because of continuous variations in images, huge amounts of data, and high processing speed demands. The problem becomes even harder in the case of sea background. This paper presents an initial study of neural network based method for target detection and tracking in cluttering environment. The approach uses a combination of differential motion analysis, Kohonen self-organizing network and region growing method. The network is capable of detecting the mass-centers of moving objects within one frame. The history of neurons positions in the sequential frames approximates the traces of the targets. The experiments done with the network in simulated environment showed promising results.

Detection of Finger Motion ERP & Estimation of the Motor Neuro-Pathway (손가락 움직임에 의한 뇌 유발전위 검출 및 운동성 신경로 추정)

  • Bae, B.H.;Kim, D.W.;Choi, J.M.;Kim, S.Y.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1994 no.12
    • /
    • pp.121-123
    • /
    • 1994
  • 손가락 움직임과 관련된 운동성 유발전위를 검출하기 위하여 컴퓨터를 이용하여 피검자에게 움직임 명령을 제시하고 명령에 따른 최종적인 피검자의 운동이 나타나는 과정까지의 뇌전위를 검출하는 시스템을 구성하였다. 위와 갊은 실험을 왼손 오른손에 대하여 자각 700번 정도 수행하여 average method를 이용하여 운동성 유발 전위를 검출하고, 신경전류 추적법을 이용하여 뇌의 흥분 뉴런군을 추정하였다.

  • PDF

Occluded Object Motion Tracking Method based on Combination of 3D Reconstruction and Optical Flow Estimation (3차원 재구성과 추정된 옵티컬 플로우 기반 가려진 객체 움직임 추적방법)

  • Park, Jun-Heong;Park, Seung-Min;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.5
    • /
    • pp.537-542
    • /
    • 2011
  • A mirror neuron is a neuron fires both when an animal acts and when the animal observes the same action performed by another. We propose a method of 3D reconstruction for occluded object motion tracking like Mirror Neuron System to fire in hidden condition. For modeling system that intention recognition through fire effect like Mirror Neuron System, we calculate depth information using stereo image from a stereo camera and reconstruct three dimension data. Movement direction of object is estimated by optical flow with three-dimensional image data created by three dimension reconstruction. For three dimension reconstruction that enables tracing occluded part, first, picture data was get by stereo camera. Result of optical flow is made be robust to noise by the kalman filter estimation algorithm. Image data is saved as history from reconstructed three dimension image through motion tracking of object. When whole or some part of object is disappeared form stereo camera by other objects, it is restored to bring image date form history of saved past image and track motion of object.