• Title/Summary/Keyword: 눈물층의 두께

Search Result 8, Processing Time 0.035 seconds

An Excel Program for Dk Calculation of Contact Lens (엑셀 프로그램을 이용한 콘택트렌즈의 Dk 결정)

  • Kim, Dae Soo
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.16 no.1
    • /
    • pp.107-116
    • /
    • 2011
  • Purpose: The review article was written to establish an excel program that could calculate minimal Dk of contact lens without $O^2$ deficiency and actual $O^2$ concentration on cornea when contact lens were being fitted by changing lens-related factors. Methods: An excel program was formulated to calculate the thickness of post-lens lacrimal layer, Dk of contact lens and $O^2$ concentration on cornea. Results: With the excel program established, minimal $O^2$ concentration needed on cornea could be calculated when the thickness of post-lens lacrimal layer was changed by varying lens-related factors. A different route in the excel program was needed to choose based on the shape of lacrimal layer. The thickness of lacrimal layer was determined by the shape of meniscus made of tear between lens edge and cornea with flat fit. Thus, the $O^2$ concentration showing negative number in calculation decreased on peripheral cornea with flatter fitting and actual $O^2$ concentration would be zero on cornea. With tight fitting, the thickness of post-lens lacrimal layer is much thicker than lens itself thus negative number in calculation by the excel program is shown indicating zero oxygen on cornea. It can cause $O^2$ deficiency regardless of Dk of contact lens. Conclusions: The calculation of thickness of post-lens lacrimal layer and $O^2$ concentration on cornea by the established excel program is suggested to avoid $O^2$ deficiency when fitting state is varied by changing lens-related factors.

Model on the Capillary Action-Induced Dynamics of Contact Lens (모세관 작용에 의한 콘택트 렌즈의 운동 모델)

  • Kim, Dae-Soo
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.6 no.2
    • /
    • pp.85-97
    • /
    • 2001
  • A mathematical model was proposed to analyze the damped motion of contact lens which is initially displaced from the equilibrium position. The model incorporates the differential equations and their numerical solution program, based on the formulations of restoring force arising from the capillary action in the tear-film layer between the lens and cornea. The model predicts the capillary action induced surface tension, time dependence of displacement of lens when it is released from the equilibrium position. It seems that the motion of lens is similar to the typical over-damped oscillation caused by the large viscous friction in the liquid layer between the cornea and lens. The effect of variables such as base curves, lens diameters and thickness of tear film layer were illustrated by the computer simulation of the derived program. The time required for the lens to return to the original position increases as the liquid layer thickness increases and it decreases as the diameter of lens increases. With the certain value of base curve the time interval is found to be minimum. The free vibrations of lenses were also simulated varying the parameters such as base curve, diameter, layer thickness. The resonant frequencies are inversely proportional to the liquid layer thickness and it increases as the lens diameter increases. The resonant frequency of lens has a maximum when the diameter is of certain value. If the external impulse or force of the same frequency as the natural frequency of contact lens acted on the cornea in vivo it may cause an excessive movement and thus it might cause the distortion 10 the lens or be pulled off the eye.

  • PDF

Oxygen Diffusion According to the Fitting Conditions of Contact Lens (콘택트렌즈의 피팅조건에 따른 산소확산)

  • Kim, Dae Soo
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.13 no.3
    • /
    • pp.35-43
    • /
    • 2008
  • Purpose: This review article was written to investigate how the various factors, such as lacrimal thickness, CL's thickness and Dk, affects the influx of $O_2$ diffusion into the cornea. Methods: A mathematical model was proposed to analyze the oxygen diffusion reaching the cornea through the tear layers and contact lens based on Fick's law and the principle of continuity of the diffusion flux through the each layers. Results: The model predicts how the parameters such as the thickness of tear layer on the cornea, both the Dk and thickness of contact lenses etc., affect the oxygen tension at cornea and oxygen flux entering the cornea. Conclusions: It is found that either too flat or too tightly fitted contact lenses can cause the oxygen deficiency at/inside the periphery of the cornea because of the reduction of oxygen flux resulted from too thickened tear layer.

  • PDF

Model on the Oxygen Transmission of Contact Lenses according to the Fitting (콘택트렌즈의 산소투과에 대한 피팅의 영향)

  • Kim, Daesoo;Park, Mijung
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.8 no.2
    • /
    • pp.1-11
    • /
    • 2003
  • A mathematical model was proposed to analyze the oxygen diffusion reaching the cornea through the tear layers and contact lens based on Fick's law and the principle of continuity of the diffusion flux through the each layers. The model predicts how the parameters such as the thickness of tear layer on the cornea, both the Dk and thickness of contact lenses etc., affect the oxygen tension at cornea and oxygen flux entering the cornea. It is found that either too flat or too tightly fitted contact lenses can cause the oxygen deficiency inside the periphery of the cornea because of the reduction of oxygen flux resulted from too thickened tear layer.

  • PDF

Effect of Intense Regulated Pulse Light on Thickness of Tear Film Lipid Layer and Dry Eye Syndrome (조절펄스광선조사가 눈물막 지질층 두께 및 안구건조증에 미치는 효과)

  • Gil, Tae Young;Bae, Gi Hyun;Kwag, Joo Young;Hyun, Joo;Choi, Jin Seok;Pak, Kyu Hong;Chung, Sung Kun
    • Journal of The Korean Ophthalmological Society
    • /
    • v.59 no.12
    • /
    • pp.1103-1107
    • /
    • 2018
  • Purpose: To evaluate the clinical effect of intense regulated pulse light (IRPL) and changes in tear film thickness in dry eye patients. Methods: A retrospective study was conducted on 25 patients with Meibomian gland dysfunction who had subjective dry eye discomfort and whose tear film break-up time (TBUT) was < 10 seconds. All patients were treated with IRPL three times on days 1, 15, and 45. TBUT, Schirmer 1 test results, cornea staining score with fluorescein, ocular surface disease index (OSDI), and lipid layer thickness were measured and compared before and after the procedure. Results: TBUT was significantly increased from $3.7{\pm}1.2s$ to $4.4{\pm}2.1s$ after IRPL (p = 0.03). Schirmer 1 test and cornea staining scores changed significantly (p < 0.01 and p = 0.01, respectively). OSDI also showed a statistically significant improvement from $39.5{\pm}17.5points$ to $30.4{\pm}18.7points$ (p = 0.01). However, no significant difference in lipid layer thickness was observed (p = 0.49). Conclusions: IRPL is an effective treatment modality to improve TBUT, Schirmer 1 test scores, cornea staining scores, and subjective dry eye symptoms.

The differences of tear film for young Korean of a day indoor space (실내 공간 내에서 한국인 청년의 하루 중 눈물층 변화)

  • Oh, Hyun Jin;Lee, Ji-Young
    • Journal of Digital Convergence
    • /
    • v.10 no.11
    • /
    • pp.535-540
    • /
    • 2012
  • This study is to research the differences of tear film for young people in of a day in a restricted indoor space. The subjects are 58 eyes volunteers for twice preliminary inspection and tear test of a day. 58 healthy individuals with no eye disease, no body disease, orthophoria, corrective visual acuity more than 0.8, binocular spherical equivalence difference over 0.50 diopter, the flattest corneal curvature in horizontal meridian and the steepest corneal curvature in vertical meridian were tested. The uncorrective visual acuity, refractive error, corneal curvature, schirmer test and tear break up test were performed in the morning and afternoon. Schirmer test were $16.0{\pm}7.0mm$ in the morning and $14.1{\pm}7.1mm$ in the afternoon. TBUT were $11.3{\pm}0.6$ sec in the morning and $12.1{\pm}0.9$ sec in the afternoon. They have no significant differences.

Fundamentals of Tight fitted Contact Lens Movement (Tight Fit 콘택트렌즈 운동의 기초)

  • Kim, Dae Soo
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.14 no.3
    • /
    • pp.17-27
    • /
    • 2009
  • Purpose: This review article was written to determine the effects of parameters characterizing a hard contact lens (RGP included), such as BCs, diameters, edge angles, on the time interval for tight fitted lens to return to the equilibrium when it was decentered from blinking. Methods: A mathematical formulation was established to relate or calculate the restoring forces and thickness of lacrimal layer beneath the cornea with the various lens parameters when the tight fitted lens was decentered from blinking. Based on this formulation the differential equations and their numerical solution program were set up to describe the time dependence of the lens on the position and to estimate the time for the lens's return to the equilibrium after blink. Results: It is found that the time interval for the tight fitted lens to return to the equilibrium decreases as either the BC decreases or the diameter increases because both the reduction in BC and increase in diameter result in the increase in the lacrimal layer thickness between the lens and cornea increase which yielded the lowering of the viscous friction in the lens motion. As the edge angle of tight fitted lens increases the time for recentering decreases due to the increase in restoring force without change in lacrimal thickness beneath the lens. In the case of flat fitted hard lens (RGP included), the lacrimal layer thickness under the lens increases as either BC or diameter increases which results in reduction in viscous friction so that the time for the lens's return to the equilibrium were to decrease. The edge angle of flat fitted lens does not affect the lens motion. Conclusions: The effect of BCs on the lens motion (time to approach the equilibrium) was concluded to be significant with both tight and flat fitted lens where its results are contrary with each other. The edge angle of lens only affects the motion in tight fitted lenses.

  • PDF

Analysis on Forces Acting on the Contact Lens Fitted on the Cornea (콘택트 렌즈에 작용하는 힘의 해석)

  • Kim, Dae-Soo
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.7 no.2
    • /
    • pp.1-11
    • /
    • 2002
  • A mathematical model is proposed to analyze the force; acting on the hard contact lens fitted on the cornea. The model incorporates the nonlinear equations and their numerical solution program, based on the formulations of surface tension force arising from the capillary action in the tear-film layer between the lens and cornea. The model simulates how the adhesion between lens and cornea varies according to the base curves and diameters of the lenses. When the spherical lens is fitted on the spherical cornea it is to rotate downward due to the weight of lens itself until it reaches an equilibrium position along the cornea where the counter(upward) moment caused by net force between the upper and lower portion of the periphery of lens. It is found that both the adhesion and displacement of lens along the cornea, where the gravity of lens balances the capillary-induced upward force, increases rapidly as the base curve of lens increases, i.e., as the lens gets flatter, while the increase in the diameter of lenses has resulted in the less increase in the rotation and adhesion. With the base curve and diameters of lenses being remained constant the increase in surface tension of tear film yields the increase in the adhesion between the cornea and lens while the initial rotation of lens is inversely proportional to the surface tension of the tear film.

  • PDF