• Title/Summary/Keyword: 누설 와류

Search Result 35, Processing Time 0.018 seconds

A Numerical Analysis of Tip Flow Characteristics in An 1.5 Stage Axial Turbine (1.5단 축류 터빈의 익단 유동 특성에 관한 수치해석)

  • Hwang, Dong-Ha;Jung, Yo-Han;Baek, Je-Hyun;Rhee, Dong-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.157-160
    • /
    • 2008
  • Tip clearance is a critical point in turbine to reduce friction between blade and casing. To estimate the direct effectiveness of the tip clearance, numerically analyzed are flow passing through rotors with and without tip clearance. The Results by CFX tells that rotors with tip clearance have vortex structure which makes larger loss in turbine, and shows lower total-to-total efficiency than that without tip clearance.

  • PDF

Three-Dimensional Flow and Aerodynamic Loss in the Tip-Leakage Flow Region of a Turbine Blade with Pressure-Side Winglet and Suction-Side Squealer (압력면윙렛/흡입면스퀼러형 터빈 동익 팁누설영역에서의 3차원유동 및 압력손실)

  • Cheon, Joo Hong;Kang, Dong Bum;Lee, Sang Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.5
    • /
    • pp.399-406
    • /
    • 2014
  • Three-dimensional flow and aerodynamic loss in the tip-leakage flow region of a turbine blade equipped with both a pressure-side winglet and a suction-side squealer have been measured for the tip gap-to-span ratio of h/s = 1.36%. The suction-side squealer has a fixed height-to-span ratio of $h_s/s$ = 3.75% and the pressure-side winglet has width-to-pitch ratios of w/p = 2.64%, 5.28%, 7.92% and 10.55%. The results are compared with those for a plane tip and for a cavity squealer tip of $h_{ps}/s$ = 3.75%. The present tip delivers lower loss in the passage vortex region but higher loss in the tip-leakage vortex region, compared to the plane tip. With increasing w/p, its mass-averaged loss tends to be reduced. Regardless of w/p, the present tip provides lower loss than the plane tip but higher loss than the cavity squealer tip.

Experimental Study on the Unsteady Flow Characteristics of the Counter-Rotating Axial Flow Fan (엇회전식 축류팬의 비정상 유동특성에 관한 실험적 연구)

  • Cho, Lee-Sang;Choi, Hyun-Min;Kang, Jeong-Seek;Cho, Jin-Soo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.305-310
    • /
    • 2007
  • For the understanding of the complex flow characteristics in the counter-rotating axial flow fan, it is necessary to investigate the three-dimensional unsteady flow fields in the counter-rotating axial flow fan. This information is also essential for the prediction of the aerodynamic and acoustical characteristics of the counter-rotating axial flow fan. Experimental study on the three-dimensional unsteady flow in the counter-rotating axial flow fan is carried out at the design point(operating condition). Three-dimensional unsteady flow fields in the counter rotating axial flow fan are measured at the cross-sectional planes of the upstream and downstream of each rotor using the $45^{\circ}$ inclined hot-wire. Three-dimensional unsteady flow fields in the counter-rotating axial flow such as the wake, the tip vortex and the tip leakage flow are shown the form of the velocity vectors and the velocity contours.

  • PDF

Flow Measurements and Performance Analysis using a 5-Hole Pitot Tube and a Rotating Hot-Wire Probe in an Axial Flow Fan (5공 피토관 및 회전 열선 유속계에 의한 축류 홴 내부 유동장 계측 및 평가)

  • Jang, Choon-Man;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.12
    • /
    • pp.1750-1757
    • /
    • 2003
  • This paper describes the flow measurements inside the blade passage of an axial flow fan by using a rotating hot-wire probe sensor from a relative flame of reference fixed to the rotor blades. The validity of fan rotor designed by a streamline curvature equation was performed by the measurement of the three-dimensional flow upstream and downstream of the fan rotor using a 5-hole pitot tube. The vortical flow structure near the rotor tip can be clearly observed by the measurements of a relative velocity and its fluctuation on quasi-orthogonal planes to a tip leakage vortex. Larger vortical flow, which results in higher blockage in the main flow, is formed according to decrease a flow rate. The vortical flow spreads out to the 30 percent span from the rotor tip at near stall condition. In the design operating condition, the tip leakage vortex is moved downstream while the center of the vortex keeps constant in the spanwise direction. Detailed characteristics of a velocity fluctuation with relation to the vortex were also analyzed.

Optimal Design for a Conic Winglet of a Dual Type Combined Fan (이중구조팬의 Conic Winglet 최적설계)

  • Kim, Jin-Wook;Kim, Woo-Teak;Ryu, Min-Hyoung;Cho, Lee-Sang;Cho, Jin-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.6
    • /
    • pp.468-476
    • /
    • 2016
  • In this study, the conic winglet which is made by rotating wing tip airfoil by each 3 axis is applied to the dual type combined fan to reduce the wing tip leakage loss. Computational Fluid Dynamics is used to calculate the loss and optimum technique is used to get minimum loss. Optimization results shows that total pressure loss coefficient was reduced by 3.4 %, and optimization model was a bended shape at the end of wing forward to pressure side.