• Title/Summary/Keyword: 뇌 영역 분할

Search Result 67, Processing Time 0.032 seconds

Brain Magnetic Resonance Image Segmentation Using Adaptive Region Clustering and Fuzzy Rules (적응 영역 군집화 기법과 퍼지 규칙을 이용한 자기공명 뇌 영상의 분할)

  • 김성환;이배호
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.525-528
    • /
    • 1999
  • Abstract - In this paper, a segmentation method for brain Magnetic Resonance(MR) image using region clustering technique with statistical distribution of gradient image and fuzzy rules is described. The brain MRI consists of gray matter and white matter, cerebrospinal fluid. But due to noise, overlap, vagueness, and various parameters, segmentation of MR image is a very difficult task. We use gradient information rather than intensity directly from the MR images and find appropriate thresholds for region classification using gradient approximation, rayleigh distribution function, region clustering, and merging techniques. And then, we propose the adaptive fuzzy rules in order to extract anatomical structures and diseases from brain MR image data. The experimental results shows that the proposed segmentation algorithm given better performance than traditional segmentation techniques.

  • PDF

Classification of General Sound with Non-negativity Constraints (비음수 제약을 통한 일반 소리 분류)

  • 조용춘;최승진;방승양
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.10
    • /
    • pp.1412-1417
    • /
    • 2004
  • Sparse coding or independent component analysis (ICA) which is a holistic representation, was successfully applied to elucidate early auditor${\gamma}$ processing and to the task of sound classification. In contrast, parts-based representation is an alternative way o) understanding object recognition in brain. In this thesis we employ the non-negative matrix factorization (NMF) which learns parts-based representation in the task of sound classification. Methods of feature extraction from the spectro-temporal sounds using the NMF in the absence or presence of noise, are explained. Experimental results show that NMF-based features improve the performance of sound classification over ICA-based features.

Effects of Lavandula angustifolia Aroma on Electroencephalograms in Female Adults with Sleep Disorders (라벤더향이 수면장애가 있는 여자 성인의 뇌파에 미치는 영향)

  • Jung, Han-Na;Choi, Hyun-Ju
    • Journal of Life Science
    • /
    • v.22 no.2
    • /
    • pp.192-199
    • /
    • 2012
  • This study investigated the effects of Lavandula angustifolia (L. angustifolia) aroma on the brain electrical activity evaluated by electroencephalogram (EEG) in female adults with sleep disorders. The subjects were 28 healthy female adults and their sleep disorders were classified by the Pittsburgh Sleep Quality Index. EEG electrodes were attached at the frontal (F3, F4), temporal (T3, T4), occipital (O1, O2), parietal (P3, P4), reference, and ground regions according to the International 10-20 system. Subjects were exposed to the L. angustifolia aroma for 3 min. Results showed that L. angustifolia aroma decreased the occipital and parietal alpha powers, and increased the frontal theta power and occipital beta power in subjects with good sleep quality. On the other hand, L. angustifolia aroma increased the theta power in the all cranial regions after aroma treatment in subjects with poor sleep quality. In conclusion, L. angustifolia aroma diminishes a state of wakefulness in the brain and helps individuals to fall asleep. Therefore, L. angustifolia aroma may have beneficial effect for female adults with sleep disorders.

Detecting Active Brain Regions by a Constrained Alternating Least Squares Nonnegative Matrix Factorization Algorithm from Single Subject's fMRI Data (단일 대상의 fMRI 데이터에서 제약적 교차 최소 제곱 비음수 행렬 분해 알고리즘에 의한 활성화 뇌 영역 검출)

  • Ding, Xiaoyu;Lee, Jong-Hwan;Lee, Seong-Whan
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06c
    • /
    • pp.393-396
    • /
    • 2011
  • In this paper, we propose a constrained alternating least squares nonnegative matrix factorization algorithm (cALSNMF) to detect active brain regions from single subject's task-related fMRI data. In cALSNMF, we define a new cost function which considers the uncorrelation and noisy problems of fMRI data by adding decorrelation and smoothing constraints in original Euclidean distance cost function. We also generate a novel training procedure by modifying the update rules and combining with optimal brain surgeon (OBS) algorithm. The experimental results on visuomotor task fMRI data show that our cALSNMF fits fMRI data better than original ALSNMF in detecting task-related brain activation from single subject's fMRI data.

Voxel-based Morphometry (VBM) Based Assessment of Gray Matter Loss in Medial Temporal Lobe Epilepsy: Comparison with FDG PET (화소기반 형태분석 방법을 이용한 내측측두엽 간질환자의 회백질 부피/농도 감소평가; FDG PET과의 비교)

  • Kang, Hye-Jin;Lee, Ho-Young;Lee, Jae-Sung;Kang, Eun-Joo;Lee, Sang-Gun;Chang, Kee-Hyun;Lee, Dong-Soo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.1
    • /
    • pp.30-40
    • /
    • 2004
  • Purpose: The aims of this study were to find brain regions in which gray matter volume was reduced and to show the capability of voxel-based morphometry (VBM) analysis for lateralizing epileptogenic zones in medial temporal lobe epilepsy (mTLE). The findings were compared with fluorodeoxyglucose positron omission tomography (FDG PET). Materials and Methods: MR T1-weighted images of 12 left mTLE and 11 right mTLE patients were compared with those of 37 normal controls. Images were transformed to standard MNI space and averaged in order to create study-specific brain template. Each image was normalized to this local template and brain tissues were segmented. Modulation VBM analysis was performed in order to observe gray matter volume change. Gray matter was smoothed with a Gaussian kernel. After these preprocessing, statistical analysis was peformed using statistical parametric mapping software (SPM99). FDG PET images were compared with those of 22 normal controls using SPM. Results: Gray matter volume was significantly reduced in the left amygdala and hippocampus in left mTLE. In addition, volume of cerebellum, anterior cingulate, and fusiform gyrus in both sides and left insula was reduced. In right mTLE, volume was reduced significantly in right hippocampus. In contrast, FDG uptake was decreased in broad areas of left or right temporal lobes in left TLE and right TLE, respectively. Conclusions: Gray matter loss was found in the ipsilateral hippocampus by modulation VBM analysis in medial temporal lobe epilepsy. This VBM analysis might be useful in lateralizing the epileptogenic zones in medial temporal lobe epilepsy, while SPM analysis of FDG PET disclosed hypometabolic epileptogenic zones.

Effects of Virtual Reality-Based Activities of Daily Living Training on Activities of Daily Living and Rehabilitative Motivation in Patients With Traumatic Brain Injury: A Pilot Study (가상현실 기반의 일상생활활동 훈련이 외상성 뇌손상 환자의 일상생활활동 및 재활동기에 미치는 효과 : 예비연구)

  • Moon, Jong-Hoon;Jeon, Min-Jae
    • Therapeutic Science for Rehabilitation
    • /
    • v.8 no.4
    • /
    • pp.41-51
    • /
    • 2019
  • Objective : The purpose of this study was to investigate the effects of virtual reality-based activities of daily living (ADL) training on ADL and rehabilitative motivation in patients with traumatic brain injury. Methods : This study was performed using a pre-post design with seven traumatically brain injured patients. Subjects were subjected to virtual reality-based ADL training for 30 minutes a day, 2 to 3 times a week for 4 weeks. Evaluation was conducted before and after the intervention using the Korean Modified Barthel Index (K-MBI), Cognitive Functional Independence Measure (C-FIM), and Volitional Questionnaire (VQ). Changes before and after intervention were analyzed by Wilcoxon signed-rank test, and correlations were analyzed using Spearman's coefficient. Results : After intervention, patients with traumatic brain injury showed significant improvements in K-MBI (p<.05). There was no significant change in total C-FIM score and VQ score (p>.05). Total C-FIM score correlated significantly with VQ score (p<.05, r=.755). The social cognition domain of C-FIM had a significant correlation with VQ score (p<.05, r=826). Conclusions : Virtual reality-based ADL training can improve ADL performance, but further research is needed to determine whether improvements in social cognition and rehabilitative motivation are possible.

Gaussian Filtering Effects on Brain Tissue-masked Susceptibility Weighted Images to Optimize Voxel-based Analysis (화소 분석의 최적화를 위해 자화감수성 영상에 나타난 뇌조직의 가우시안 필터 효과 연구)

  • Hwang, Eo-Jin;Kim, Min-Ji;Jahng, Geon-Ho
    • Investigative Magnetic Resonance Imaging
    • /
    • v.17 no.4
    • /
    • pp.275-285
    • /
    • 2013
  • Purpose : The objective of this study was to investigate effects of different smoothing kernel sizes on brain tissue-masked susceptibility-weighted images (SWI) obtained from normal elderly subjects using voxel-based analyses. Materials and Methods: Twenty healthy human volunteers (mean $age{\pm}SD$ = $67.8{\pm}6.09$ years, 14 females and 6 males) were studied after informed consent. A fully first-order flow-compensated three-dimensional (3D) gradient-echo sequence ran to obtain axial magnitude and phase images to generate SWI data. In addition, sagittal 3D T1-weighted images were acquired with the magnetization-prepared rapid acquisition of gradient-echo sequence for brain tissue segmentation and imaging registration. Both paramagnetically (PSWI) and diamagnetically (NSWI) phase-masked SWI data were obtained with masking out non-brain tissues. Finally, both tissue-masked PSWI and NSWI data were smoothed using different smoothing kernel sizes that were isotropic 0, 2, 4, and 8 mm Gaussian kernels. The voxel-based comparisons were performed using a paired t-test between PSWI and NSWI for each smoothing kernel size. Results: The significance of comparisons increased with increasing smoothing kernel sizes. Signals from NSWI were greater than those from PSWI. The smoothing kernel size of four was optimal to use voxel-based comparisons. The bilaterally different areas were found on multiple brain regions. Conclusion: The paramagnetic (positive) phase mask led to reduce signals from high susceptibility areas. To minimize partial volume effects and contributions of large vessels, the voxel-based analysis on SWI with masked non-brain components should be utilized.

Investigation of the Correlation between Seoul Neuropsychological Screening Battery Scores and the Gray Matter Volume after Correction of Covariates of the Age, Gender, and Genotypes in Patients with AD and MCI (알츠하이머 치매 및 경도인지기능장애 환자에서 나이, 성별, 유전자형을 고려한 뇌 회백질 부피와 표준신경심리검사와의 상관관계 연구)

  • Lee, Seung-Yeon;Yoon, Soo-Young;Kim, Min-Ji;Rhee, Hak Young;Ryu, Chang-Woo;Jahng, Geon-Ho
    • Investigative Magnetic Resonance Imaging
    • /
    • v.17 no.4
    • /
    • pp.294-307
    • /
    • 2013
  • Purpose : To investigate the correlations between Seoul Neuropsychological Screening Battery (SNSB) scores and the gray matter volumes (GMV) in patients with Alzheimer's disease (AD) and mild cognitive impairment (MCI) and cognitively normal (CN) elderly subjects with correcting the genotypes. Materials and Methods: Total 75 subjects were enrolled with 25 subjects for each group. The apolipoprotein E (APOE) epsilon genotypes, SNSB scores, and the 3D T1-weighted images were obtained from all subjects. Correlations between SNSB scores and GMV were investigated with the multiple regression method for each subject group using both voxel-based and region-of-interest-based analyses with covariates of age, gender, and the genotype. Results: In the AD group, Rey Complex Figure Test (RCFT) delayed recall scores were positively correlated with GMV. In the MCI group, Seoul Verbal Learning Test (SVLT) scores were positively correlated with GMV. In the CN group, GMV negatively correlated with Boston Naming Test (K-BNT) scores and Mini-Mental State Examimation (K-MMSE) scores, but positively correlated with RCFT scores. Conclusion: When we used covariates of age, gender, and the genotype, we found statistically significant correlations between some SNSB scores and GMV at some brain regions. It may be necessary to further investigate a longitudinal study to understand the correlation.

The effects of physical factors in SPECT (물리적 요소가 SPECT 영상에 미치는 영향)

  • 손혜경;김희중;나상균;이희경
    • Progress in Medical Physics
    • /
    • v.7 no.1
    • /
    • pp.65-77
    • /
    • 1996
  • Using the 2-D and 3-D Hoffman brain phantom, 3-D Jaszczak phantom and Single Photon Emission Computed Tomography, the effects of data acquisition parameter, attenuation, noise, scatter and reconstruction algorithm on image quantitation as well as image quality were studied. For the data acquisition parameters, the images were acquired by changing the increment angle of rotation and the radius. The less increment angle of rotation resulted in superior image quality. Smaller radius from the center of rotation gave better image quality, since the resolution degraded as increasing the distance from detector to object increased. Using the flood data in Jaszczak phantom, the optimal attenuation coefficients were derived as 0.12cm$\^$-1/ for all collimators. Consequently, the all images were corrected for attenuation using the derived attenuation coefficients. It showed concave line profile without attenuation correction and flat line profile with attenuation correction in flood data obtained with jaszczak phantom. And the attenuation correction improved both image qulity and image quantitation. To study the effects of noise, the images were acquired for 1min, 2min, 5min, 10min, and 20min. The 20min image showed much better noise characteristics than 1min image indicating that increasing the counting time reduces the noise characteristics which follow the Poisson distribution. The images were also acquired using dual-energy windows, one for main photopeak and another one for scatter peak. The images were then compared with and without scatter correction. Scatter correction improved image quality so that the cold sphere and bar pattern in Jaszczak phantom were clearly visualized. Scatter correction was also applied to 3-D Hoffman brain phantom and resulted in better image quality. In conclusion, the SPECT images were significantly affected by the factors of data acquisition parameter, attenuation, noise, scatter, and reconstruction algorithm and these factors must be optimized or corrected to obtain the useful SPECT data in clinical applications.

  • PDF

The Analysis of Quantitative EEG to the Left Cranial Cervical Ganglion Block in Beagle Dogs (비글견에서 좌측앞쪽목신경절 차단에 대한 정량적 뇌파 분석)

  • Park, Woo-Dae;Bae, Chun-Sik;Kim, Se-Eun;Lee, Soo-Han;Lee, Jung-Sun;Chang, Wha-Seok;Chung, Dai-Jung;Lee, Jae-Hoon;Kim, Hwi-Yool
    • Journal of Veterinary Clinics
    • /
    • v.24 no.4
    • /
    • pp.514-521
    • /
    • 2007
  • The sympathetic nerve block improves the blood flow in the innervated regions. For this region, the sympathetic nerve block has been performed in the neural and cerebral disorders. However, the cerebral blood flow regulation of the cranial cervical ganglion block in dogs have not been well defined and the correlation to the changes in the cerebral circulation and the changes in the electroencephalogram is not well defined in dogs yet. Therefore, we investigated the hypothesis that changes in the EEG could be affected by the changes in cerebral blood flow following the cranial cervical ganglion block in dogs. Twenty five beagle dogs were divided into 3 groups; group I(LCCGB, n=10) underwent left sided cranial cervical ganglion block using the 1% lidocaine, group II(L, n=10) injected the 1% lidocaine into the right or left sided digastricus muscle, group III(N/SCCGB, n=5, served as control) underwent the left sided cranial cervical ganglion block using saline. A statistical difference was not found between the control group and the LCCGB group in the 95% spectral edge frequency(SEF) and the median frequency(MF). In the relative band power, the $\delta$ frequency was decreased during 5-25 min, while the $\alpha$ frequency was increased during the same time(p<0.05). But the $\theta$ frequency and the $\beta$ frequency were not shown the significant changes compared with the control group during the same time(p<0.05). These results suggest that the left cranial cervical ganglion block does not induce the change of the cerebral blood flow and its effect is insignificant.