Proceedings of the Korea Multimedia Society Conference
/
2001.06a
/
pp.95-98
/
2001
본 논문은 뇌의 축방향(axial sect ion)에 대하여 촬영한 뇌의 자기공명 영상(Magnetic Resonance Imaging)을 대상으로 뇌의 영역만을 분리하기 위한 방법을 제안하고 있다. MR영상은 슬라이스마다 다른 분포값을 가지기 때문에 각 슬라이스 별로 조직의 특성을 파악하여 뇌의 영역을 분리하였다. 히스토그램의 명암값 분포를 분석하여 배경과 뇌를 둘러싸고 있는 외피를 제거하고 라벨링(label1ing) 알고리즘을 적용하여 뇌만 분리 할 수 있도록 하는 마스크 영상을 만들어 이것을 이용하여 원영상으로부터 뇌의 영역만을 분리하였다.
Proceedings of the Korea Multimedia Society Conference
/
2001.11a
/
pp.159-164
/
2001
본 연구에서 설계하고 구현한 뇌 MR영상 처리기에서는 뇌 MR 영상에서 진단에 필요한 정보들을 자동 추출한다. 의료영상 처리 시에는 수집된 의료영상의 특징을 분석하고 특징들을 분류해야 하며 이를 위해서는 효율적인 특징 추출 알고리즘들 필요하다. 뇌 MR 영상 처리기는 영상의 잡음제거나 영상 강화를 위한 전처리기, 영상의 특징을 추출하기 위한 영역분할기와 전역, 지역 특징 추출기로 구성된다. 뇌 MR 영상 특징 추출을 위한 효율적인 의료영상 처리기의 개발 내용을 기술한다.
Recently, many suggestions have been made in image segmentation methods for extracting human organs or disease affected area from huge amounts of medical image datasets. However, images from some areas, such as brain, which have multiple structures with ambiruous structural borders, have limitations in their structural segmentation. To address this problem, clustering technique which classifies voxels into finite number of clusters is often employed. This, however, has its drawback, the influence from noise, which is caused from voxel by voxel operations. Therefore, applying image enhancing method to minimize the influence from noise and to make clearer image borders would allow more robust structural segmentation. This research proposes an efficient structural segmentation method by filtering based clustering to extract detail structures such as white matter, gray matter and cerebrospinal fluid from brain MR. First, coherence enhancing diffusion filtering is adopted to make clearer borders between structures and to reduce the noises in them. To the enhanced images from this process, fuzzy c-means clustering method was applied, conducting structural segmentation by assigning corresponding cluster index to the structure containing each voxel. The suggested structural segmentation method, in comparison with existing ones with clustering using Gaussian or general anisotropic diffusion filtering, showed enhanced accuracy which was determined by how much it agreed with the manual segmentation results. Moreover, by suggesting fine segmentation method on the border area with reproducible results and minimized manual task, it provides efficient diagnostic support for morphological abnormalities in brain.
In this paper, we propose the regions segmentation method of the white matter and the gray matter for brain MR image by using the ant colony optimization algorithm. Ant Colony Optimization (ACO) is a new meta heuristics algorithm to solve hard combinatorial optimization problem. This algorithm finds the expected pixel for image as the real ant finds the food from nest to food source. Then ants deposit pheromone on the pixels, and the pheromone will affect the motion of next ants. At each iteration step, ants will change their positions in the image according to the transition rule. Finally, we can obtain the segmentation results through analyzing the pheromone distribution in the image. We compared the proposed method with other threshold methods, viz. the Otsu' method, the genetic algorithm, the fuzzy method, and the original ant colony optimization algorithm. From comparison results, the proposed method is more exact than other threshold methods for the segmentation of specific region structures in MR brain image.
Proceedings of the Korea Multimedia Society Conference
/
2001.06a
/
pp.204-207
/
2001
뇌 MR 영상에서 질환을 자동적으로 진단하고 판별하는 작업은 정상인의 뇌 영상과의 비교를 통해서 가능하다. 정상인과의 뇌 영상 비교를 통하여 보다 정확하게 질병에 대한 근거를 제시할 수가 있기 때문에 이러한 접근 방법들이 여러 의료영상 연구 분야에서 시도되고 있다. 정상인의 뇌 영상과의 비교를 위해서는 우선적으로 해결되어야 하는 것이 현재의 대상 영상이 정상인 뇌의 어느 위치의 영상과 일치하는 지를 판별하는 문제이다. 따라서 본 연구는 이러한 뇌 매핑에 사용될 수 있는 특징들을 추출하기 위한 것으로, 뇌 매핑에 사용되는 특징들을 추출하기 위해서 뇌 MR 영상으로부터 대리영역, 뇌영역, 뇌척수액영역 그리고 눈영역을 분할한 후 이들의 윤곽선, 최소사각형과 각 영역들의 픽셀 정보들을 찾아낸다. 이는 추후 연구할 뇌 매핑을 위한 대분류에 사용될 수 있다.
The probabilistic anatomical maps are used to localize the functional neuro-images and morphological variability. The quantitative indicator is very important to inquire the anatomical position of an activated legion because functional image data has the low-resolution nature and no inherent anatomical information. Although previously developed MNI probabilistic anatomical map was enough to localize the data, it was not suitable for the Korean brains because of the morphological difference between Occidental and Oriental. In this study, we develop a probabilistic anatomical map for Korean normal brain. Normal 75 blains of T1-weighted spoiled gradient echo magnetic resonance images were acquired on a 1.5-T GESIGNA scanner. Then, a standard brain is selected in the group through a clinician searches a brain of the average property in the Talairach coordinate system. With the standard brain, an anatomist delineates 89 regions of interest (ROI) parcellating cortical and subcortical areas. The parcellated ROIs of the standard are warped and overlapped into each brain by maximizing intensity similarity. And every brain is automatically labeledwith the registered ROIs. Each of the same-labeled region is linearly normalize to the standard brain, and the occurrence of each legion is counted. Finally, 89 probabilistic ROI volumes are generated. This paper presents a probabilistic anatomical map for localizing the functional and structural analysis of Korean normal brain. In the future, we'll develop the group specific probabilistic anatomical maps of OCD and schizophrenia disease.
In anatomical aspects, magnetic resonance image offers more accurate information than other medical images such as X ray, ultrasonic and CT images. This paper introduces a method that segments and detects lesion for 2 dimensional axial MR brain images automatically. Image segmentation process consists of 2 stages. First stage extracts cerebrum region using thresholding and morphology. In the second stage, white matter, gray matter and cerebrospinal fluid in the cerebrum are extracted using FCM, We could improve processing time as removing uninterested region. Finally symmetry measure and anatomical Knowledge are used to detect lesion.
Proceedings of the Korean Information Science Society Conference
/
2000.04b
/
pp.517-519
/
2000
본 논문은 뇌의 수직단면에 대하여 촬영된 자기공명영상에서 뇌 영역을 분리한 후 백질과 회백질 및 뇌척수액을 분리하고 각각의 체적을 산출하기 위한 것이다. 본 연구는 먼저 뇌의 자기공명영상에서 영상의 배경 및 뇌 내부를 둘러싸고 있는 외피 및 지방층으로부터 뇌 영역 전체를 분리하였으며, 부분체적의 문제(partial volume artifact)에 의해 명암값의 번짐 현상을 보이는 뇌의내부 영역에서 각 성분의 부분체적을 산출하여 각 조직을 분리하기 위한 명암 값을 결정한 후 백질과 회백질 및 뇌척수액의 영역을 분리하였다. 본 연구는 뇌의 위축을 보이지 않은 정상인의 자기공명영상을 대상으로 하였으며, 향후, 이러한 연구 결과는 알쯔하이머 병이나 뇌성마비 등과 같은 퇴행성 뇌질환 환자의 뇌 위축정도를 객관적으로 진단하는 방법으로 사용될 수 있도록 하는데 있다.
This paper emphasizes on the accomplishment of compensated proton density image and T2 weighted image taken from the shrinkage surface of the Brain. From the images, the Brain's surface shrinkage in the normal image and the surface shrinkage in the abnormal image can be observed. After the separation of white matter, gray matter, and CSF, this algorithm calculates the volume of each of them automatically. Results are subdivided into particular ages and saved in the database to be analyzed and to be processed statistically. Therefore, by using this algorithm the normal and abnormal stages can be detected in the early stages to diagnose. This result easily discernment Alzheimer patient and is useful for Alzheimer diagnostic and early detection.
This paper proposes a method which visualizes MRI head data in 3 dimensions with direct volume rendering. Though surface rendering is usually used for MRI data visualization, it has some limits of displaying little speckles because it loses the information of the speckles in the surfaces while acquiring the information. Direct volume rendering has ability of displaying little speckles, but it doesn't treat MRI data because of the data features of MRI. In this paper, we try to visualize MRI head data in 3 dimensions as follows. First, we separate the brain region from the head region of MRI head data, next increase the pixel level of the brain region, then combine the brain region with the increased pixel level and the head region without brain region, last visualizes the combined MRI head data with direct volume rendering. We segment the brain region from head region based on histogram threshold, morphology operations and snakes algorithm. The proposed segmentation method shows 91~95% similarity with a hand segmentation. The method rather clearly visualizes the organs of the head in 3 dimensions.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.