• Title/Summary/Keyword: 뇌 기능 영상

Search Result 280, Processing Time 0.023 seconds

Development of Transcranial Magnetic Stimulation Navigation System (경두개 자기 자극의 응용을 위한 내비게이션 시스템 개발)

  • An, Hyo-Jin;Ahn, Se-Jong;Shin, Sung-Wook;Seo, Young-Heon;Yoon, Se-Jin;Chung, Sung-Taek
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.12a
    • /
    • pp.244-247
    • /
    • 2011
  • Transcranial Magnetic Stimulation(TMS) Navigation System은 자기 자극을 이용한 비 침습적 방법으로 통증 없이 뇌 기능의 활성화 및 재활에 필요한 자극, 자극의 위치, 환자의 모션 등을 3차원 뇌영상에 제공한다. 이 시스템에서 사용되는 소프트웨어는 Talairach 좌표를 적용하여 재구성된 MR 영상을 3차원으로 제공하며, 이를 이용하여 자극의 위치를 표시할 수 있는 기준을 제공한다. 또한 환자의 모션이나 자극 트랜스듀서의 위치를 Talairach 좌표 매핑 소프트웨어 제공하기위해 스테레오 카메라를 이용하여 정확한 좌표를 획득할 수 있는 알고리즘을 적용하였다. 이러한 시스템 개발을 통해 뇌질환 연구와 치료에 다양하게 활용될 수 있을 것으로 기대된다.

  • PDF

Salty-taste Activation of Human Brain Disclosed by Gustatory fMRI Study (뇌기능 자기공명영상 장치를 이용한 짠맛 자극에 따른 인간 뇌의 반응에 대한 기초 연구)

  • Kim S.H.;Choi K.S.;Lee H.Y.;Shin W.J.;Eun C.K.;Mun C.W.
    • Investigative Magnetic Resonance Imaging
    • /
    • v.9 no.1
    • /
    • pp.30-35
    • /
    • 2005
  • Purpose : The purpose of this study is to observe the blood oxygen level dependent (BOLD) contrast changes due to the reaction of human brain at a gustatory sense in response to a salty-taste stimulation. Materials and Methods : Twelve healthy, non-smoking, right-handed male subjects (mean age: 25.6, range: 23-28 years) participated in this salty-taste stimulus functional magnetic resonance (fMRI) study. MRI scans were performed with 1.57 GE Signa, using a multi-slice GE-EPI sequence according to a blood-oxy-gen-level dependent (BOLD) experiment paradigm. Scan parameters included matrix size $128\times128$, FOV 250 mm, TR 5000 msec, TE 60 msec, TH/GAP 5/2 mm. Sequential data acquisitions were carried out for 42 measurements with a repetition time of 5 sec for each taste-stimulus experiments. Analysis of fMRI data was carried out using SPM99 implemented in Matlab. NaCl solution $(3\%)$ was used as a salty stimulus. The task paradigm consisted of alternating rest-stimulus cycles (30-second rest, 15-second stimulus) for 210 seconds. During the stimulus period, NaCl-solution was presented to the subject's mouth through plastic tubes as a bolus of delivered every 5 sec using -processor controlled auto-syringe pump. Results : Insula, frontal opercular taste cortex, amygdala and orbitofrontal cortex (OFC) were activated by a salty-taste stimulation $(NaCl,\;3\%)$ in the fMRI experiments. And dosolateral prefrontal cortex (DLPFC) was also significantly responded to salty-taste stimuli. Activation areas of the right side hemisphere were more superior to the left side hemisphere. Conclusion : The results of this study well correspond to the fact that both insula, amygdala, OFC, DLPFC areas are established as taste cortical areas by neuronal recordings in primates. Authors found that laboratory-developed auto-syringe pump is suitable for gustatory fMRI study. Further research in this field will accelerate to inquire into the mechanism of higher order gustatory process.

  • PDF

Disturbed Functional Asymmetry of Sensorimotor Cortex in Schizophrenia: A Study with Functional Magnetic Resonance Imaging (정신분열증에서 감각운동피질의 기능적 비대칭성의 장애: 기능적 자기공명영상을 이용한 연구)

  • Ahn, Kook-Jin;Chae, Jeong-Ho;Kim, Tae;Kim, Euy-Neyng;Lee, Jee-Mun;Choi, Kyu-Ho;Hahn, Seong-Tai
    • Investigative Magnetic Resonance Imaging
    • /
    • v.4 no.1
    • /
    • pp.52-57
    • /
    • 2000
  • Purpose : The purpose of this study was to investigate the pattern of cerebral response to motor tasks in patients with schizophrenia compared with normal subjects using functional MRI. Materials and methods ; Nine right handed-schizophrenic patients and six right-handed normal subjects were included. We used right hand movement as task. Series of 120 consecutive echo-planar images per section were acquired during three cycles of task and rest activations. Lateralization index of cortical response was measured and compared between patients and normal subjects. Results ; Right hand motor task was associated with greater activation in left sensorimotor cortex than the right in normal subjects. Schizophrenia patients showed relatively decreased activation in left cortex and increased activation in right cortex compared with normal subjects. In one patient, reversed lateralization was noted. Conclusion : Normal hemispheric asymmetry of cortical response to motor task was found in different pattern in schizophrenia. Our result is consistent with functional disturbance of motor circuitry in this disorder. Functional MRI will play an important role in diagnosis and research of this disorder.

  • PDF

Development of a Korean Standard Structural Brain Template in Cognitive Normals and Patients with Mild Cognitive Impairment and Alzheimer's Disease (정상노인 및 경도인지장애 및 알츠하이머성 치매 환자에서의 한국인 뇌 구조영상 표준판 개발)

  • Kim, Min-Ji;Jahng, Geon-Ho;Lee, Hack-Young;Kim, Sun-Mi;Ryu, Chang-Woo;Shin, Won-Chul;Lee, Soo-Yeol
    • Investigative Magnetic Resonance Imaging
    • /
    • v.14 no.2
    • /
    • pp.103-114
    • /
    • 2010
  • Purpose : To generate a Korean specific brain template, especially in patients with Alzheimer's disease (AD) by optimizing the voxel-based analysis. Materials and Methods : Three-dimensional T1-weighted images were obtained from 123 subjects who were 43 cognitively normal subjects and patients with 44 mild cognitive impairment (MCI) and 36 AD. The template and the corresponding aprior maps were created by using the matched pairs approach with considering differences of age, gender and differential diagnosis (DDX). We measured several characteristics in both our and the MNI templates, including in the ventricle size. Also, the fractions of gray matter and white matter voxels normalized by the total intracranial were evaluated. Results : The high resolution template and the corresponding aprior maps of gray matter, white matter (WM) and CSF were created with the voxel-size of $1{\times}1{\times}1\;mm$. Mean distance measures and the ventricle sizes differed between two templates. Our brain template had less gray matter and white matter areas than the MNI template. There were volume differences more in gray matter than in white matter. Conclusion : Gray matter and/or white matter integrity studies in populations of Korean elderly and patients with AD are needed to investigate with this template.

Correlation between Cognitive Performance Ability, Neural Activation Area and Neural Activation Intensity in fMRI (뇌기능 영상에서 인지 수행 능력, 신경 활성화 면적 신경 활성화 크기의 상관관계)

  • Sohn Jin Hun;Oh Chong Hyun;Tack Gye Rae;Yi Jeong Han;Lee Soo Yeol;Chung Soon Cheol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.7 s.172
    • /
    • pp.200-207
    • /
    • 2005
  • This study compares two different methods of measuring brain-BOLD activation. By comparing two different methods of measurement i.e., one method calculating the neural activation area (the number of activated voxels), while the other measured the neural activation intensity (the mean intensity of selected activated yokels), this study identified the more precise method of measuring brain activation which results from the completion of a visuospatial task. 16 right-handed male college students (mean age 23.2 years) participated in this study as subjects. Functional brain images were scanned on them using a 3T MRI single-shot EPI method. No correlation was found between the levels of cognitive performance and number of activated yokels in the activated brain areas. However, a significant correlation was found between the levels of cognitive performance and the mean intensity of selected activated yokels in the parietal, frontal, and other areas. In conclusion, the method of mean intensity was considered a better index of brain activity rather than the activated yokels measurement method.

Functional Brain Mapping Using $H_2^{15}O$ Positron Emission Tomography ( II ): Mapping of Human Working Memory ($H_2^{15}O$ 양전자단층촬영술을 이용한 뇌기능 지도 작성(II): 작업 기억의 지도 작성)

  • Lee, Jae-Sung;Lee, Dong-Soo;Lee, Sang-Kun;Nam, Hyun-Woo;Kim, Seok-Ki;Park, Kwang-Suk;Jeong, Jae-Min;Chung, June-Key;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.32 no.3
    • /
    • pp.238-249
    • /
    • 1998
  • Purpose: To localize and compare the neural basis of verbal and visual human working memory, we performed functional activation study using $H_2^{15}O$ PET. Materials and Methods: Repeated $H_2^{15}O$ PET scans with one control and three different activation tasks were performed on six right-handed normal volunteers. Each activation task was composed of 13 match-ing trials. On each trial, four targets, a fixation dot and a probe were presented sequentially and subject's task was to press a response button to indicate whether or not the probe was one of the previous targets. Short meaningful Korean words, simple drawings and monochromic pictures of human faces were used as matching objects for verbal or visual memory. All the images were spatially normalized and the differences between control and activation states were statistically analyzed using SPM96. Results: Statistical analysis of verbal memory activation with short words showed activation in the left Broca's area, promoter cortex, cerebellum and right cingulate gyrus. In verbal memory with simple drawings, activation was shown in the larger regions including where activated with short words and left superior temporal cortex, basal ganglia, thalamus, prefrontal cortex, anterior portion of right superior temporal gyrus and right infero-lateral frontal cortex. On the other hand, the visual memory task activated predominantly right-sided structures, especially inferior frontal cortex, supplementary motor cortex and superior parietal cortex. Conclusion: The results are consistent with the hypothesis of the laterality and dissociation of the verbal and visual working memory from the invasive electrophysiological studies and emphasize the pivotal role of frontal cortex and cingulate gyrus in working memory system.

  • PDF

Functional MR Imaging of Cerbral Motor Cortex: Comparison between Conventional Gradient Echo and EPI Techniques (뇌 운동피질의 기능적 영상: 고식적 Gradient Echo기법과 EPI기법간의 비교)

  • 송인찬
    • Investigative Magnetic Resonance Imaging
    • /
    • v.1 no.1
    • /
    • pp.109-113
    • /
    • 1997
  • Purpose: To evaluate the differences of functional imaging patterns between conventional spoiled gradient echo (SPGR) and echo planar imaging (EPI) methods in cerebral motor cortex activation. Materials and Methods: Functional MR imaging of cerebral motor cortex activation was examined on a 1.5T MR unit with SPGR (TRfrE/flip angle=50ms/4Oms/$30^{\circ}$, FOV=300mm, matrix $size=256{\times}256$, slice thickness=5mm) and an interleaved single shot gradient echo EPI (TRfrE/flip angle = 3000ms/40ms/$90^{\circ}$, FOV=300mm, matrix $size=128{\times}128$, slice thickness=5mm) techniques in five male healthy volunteers. A total of 160 images in one slice and 960 images in 6 slices were obtained with SPGR and EPI, respectively. A right finger movement was accomplished with a paradigm of an 8 activation/ 8 rest periods. The cross-correlation was used for a statistical mapping algorithm. We evaluated any differences of the time series and the signal intensity changes between the rest and activation periods obtained with two techniques. Also, the locations and areas of the activation sites were compared between two techniques. Results: The activation sites in the motor cortex were accurately localized with both methods. In the signal intensity changes between the rest and activation periods at the activation regions, no significant differences were found between EPI and SPGR. Signal to noise ratio (SNR) of the time series data was higher in EPI than in SPGR by two folds. Also, larger pixels were distributed over small p-values at the activation sites in EPI. Conclusions: Good quality functional MR imaging of the cerebral motor cortex activation could be obtained with both SPGR and EPI. However, EPI is preferable because it provides more precise information on hemodynamics related to neural activities than SPGR due to high sensitivity.

  • PDF

Quantitative Analysis of Susceptibility Effects in TRFGE and CGE Sequences for Functional MRI (뇌기능 영상을 위한 TRFGE와 CGE 기법에서 자화율 효과의 정량적 해석)

  • 정순철;노용만;조장희
    • Investigative Magnetic Resonance Imaging
    • /
    • v.1 no.1
    • /
    • pp.66-74
    • /
    • 1997
  • fMRI, functional MRI introduced receently appears based on the gradient echo technique which is sensitive to the field inhomogeneity developed due to the local susceptibility changes of blood oxygenation and deoxygenation. There has been many variants of the basic gradient echo sequence which is sensitive to the local inhomogeniety, among others such as GRASS or SSFP to EPISTAR are the most commonly used gradient echo techniques. Common to all these gradient echo techniques is that the signal due to the susceptibility effects is generally decreased with increasing inhomogeneity due to the $T2^{*}$ effect or conventionally konwn as blood oxygenation level dependent(BOLD) effect. It is, also found that the BOLD sensitivity is also dependent on the imaging modes, namely whether the imaging is in axial, or coronal or sagittal mode as well as the directions of the vessels against the main magnetic field. We have, therefore, launched a systematic study of imaging mode dependent signal change or BOLD sensitivity as well as the signal changes due tothe tilting angle of the imaging planes. Study has been made for both TRFGE sequence and CGE sequence to compare the distinctions of the each mode since each technique has different sensitivity againsst susceptibility effect. Method of computation and both the computer simulations and their corresponding experimental results are presented.

  • PDF

Measurement of the Anisotropy of Nerve Fibers in the Hippocampal Region according to the Drinking beginning Age using TBSS(Tract-Based Spatial Statics) (TBSS(Tract-Based Spatial Statics)를 이용한 음주 시작연령에 따른 해마 영역 부위의 신경섬유의 비등방도 측정)

  • Kwak, Jong Hyeok;Kim, Gyeong Rip
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.6
    • /
    • pp.781-790
    • /
    • 2020
  • Tract-Based Spatial Statics (TBSS) after obtaining the image by examining a diffusion tensor image that can determine the presence or absence of damage to the cerebral white matter and gray matter for middle-aged men aged 30 to 50 with the starting age of drinking as a variable. As a result of measuring and analyzing the FA (fractional anisotropy) value of the brain gray matter region to the hippocampal region nerve fibers, the lower the alcohol start age in all regions, the lower the anisotropy measurement value, but the FA value was statistically significant. The study results indicated by the FA results measured in this study are that the earlier the drinking start age, the more severe the morphological changes in all neurological and anatomical brain regions in the hippocampal region of the brain gray matter and seriously affect the nerve fiber tissue. It can be said to harm and damage nerve fibers and affect functional morphological variations associated with alcohol.