• Title/Summary/Keyword: 뇌자극

Search Result 355, Processing Time 0.028 seconds

Effect of Ischemic Preconditioning for Preventing Ischemic Injury of the Spinal Cord (척추 신경의 허혈성 손상 예방을 위한 허혈성 전처치의 효과)

  • 홍종면;차성일;송우익;홍장수;임승운;임승운;임승평
    • Journal of Chest Surgery
    • /
    • v.34 no.11
    • /
    • pp.823-830
    • /
    • 2001
  • Background: Paraplegia is a serious complication of thoracic or thoracoabdominal aortic operations, which is related to ischemic injury of the spinal cord induced by low perfusion pressure during cross clamping of the aorta. Ischemic preconditioning of heart or brain with reversible sublethal ischemic injury induces resistance to subsequent lethal ischemia. The aim of this study is to investigate whether ischemic tolerance could be induced by the preconditioning of the spinal cord using swine model. Material and Method: The animals were randomly assigned to three groups: sham group(n=3), control group(n=6) and pre-conditioning group(n=8). In the sham group, we performed the left thoracotomy only without any ischemic injury. In the preconditioning group, the swine received reversible spinal cord ischemic injury by aortic clamping for 20 minutes, whereas control group had no previous aortic cross- clamping. Forty-eight hours later, the aorta was clamped for 30 minutes in both groups. Neurological examination was done 24 hours later, then the animals were euthanized for histopathology and malonedialdehyde(MDA) spectrophotometry assay of the spinal cord. Result: Statistically significant difference in neurological outcome was observed between the control and preconditioning groups at 24 hours after ischemic injury. The incidence of paraplegia and severe paresis was 100% in the control group, and 62.5% in the preconditing group(p=0.028). There was no statistically significant difference in histopathology and MDA assay of the ischemic spinal cord between these two groups with borderline statistical difference in MDA assay(p=0.0745). Conclusion: In the present swine study, ischemic preconditioning could induce tolerance against 30 minute ischemic insult of the spinal cord, although the animals did not completely recover(stand-up or walk). We expect that combining this preconditioning with other currently existing protection methods might lead to a synergistic effect, which warrants further investigation.

  • PDF

Functional MRI of Visual Cortex: Correlation between Photic Stimulator Size and Cortex Activation (시각피질의 기능적 MR 연구: 광자극 크기와 피질 활성화와의 관계)

  • 김경숙;이호규;최충곤;서대철
    • Investigative Magnetic Resonance Imaging
    • /
    • v.1 no.1
    • /
    • pp.114-118
    • /
    • 1997
  • Purpose: Functional MR imaging is the method of demonstrating changes in regional cerebral blood flow produced by sensory, motor, and any other tasks. Functional MR of visual cortex is performed as a patient stares a photic stimulation, so adaptable photic stimulation is necessary. The purpose of this study is to evaluate whether the size of photic stimulator can affect the degree of visual cortex activation. Materials and Methods: Functional MR imaging was performed in 5 volunteers with normal visual acuity. Photic stimulator was made by 39 light-emitting diodes on a plate, operating at 8Hz. The sizes of photic stimulator were full field, half field and focal central field. The MR imager was Siemens 1.5-T Magnetom Vision system, using standard head coil. Functional MRI utilized EPI sequence (TR/TE= 1.0/51. Omsec, matrix $No.=98{\times}128$, slice thickness=8mm) with 3sets of 6 imaging during stimulation and 6 imaging during rest, all 36 scannings were obtained. Activation images were obtained using postprocessing software(statistical analysis by Z-score), and these images were combined with T-1 weighted anatomical images. The activated signals were quantified by numbering the activated pixels, and activation a index was obtained by dividing the pixel number of each stimulator size with the sum of the pixel number of 3 study using 3 kinds of stimulators. The correlation between the activation index and the stimulator size was analysed. Results: Mean increase of signal intensities on the activation area using full field photic stimulator was about 9.6%. The activation index was greatest on full field, second on half field and smallest on focal central field in 4. The index of half field was greater than that of full field in 1. The ranges of activation index were full field 43-73%(mean 55%), half field 22-40 %(mean 32%), and focal central field 5-24%(mean 13%). Conclusion: The degree of visual cortex activation increases with the size of photic stimulator.

  • PDF

Effects of Motion Correction for Dynamic $[^{11}C]Raclopride$ Brain PET Data on the Evaluation of Endogenous Dopamine Release in Striatum (동적 $[^{11}C]Raclopride$ 뇌 PET의 움직임 보정이 선조체 내인성 도파민 유리 정량화에 미치는 영향)

  • Lee, Jae-Sung;Kim, Yu-Kyeong;Cho, Sang-Soo;Choe, Yearn-Seong;Kang, Eun-Joo;Lee, Dong-Soo;Chung, June-Key;Lee, Myung-Chul;Kim, Sang-Eun
    • The Korean Journal of Nuclear Medicine
    • /
    • v.39 no.6
    • /
    • pp.413-420
    • /
    • 2005
  • Purpose: Neuroreceptor PET studies require 60-120 minutes to complete and head motion of the subject during the PET scan increases the uncertainty in measured activity. In this study, we investigated the effects of the data-driven head mutton correction on the evaluation of endogenous dopamine release (DAR) in the striatum during the motor task which might have caused significant head motion artifact. Materials and Methods: $[^{11}C]raclopride$ PET scans on 4 normal volunteers acquired with bolus plus constant infusion protocol were retrospectively analyzed. Following the 50 min resting period, the participants played a video game with a monetary reward for 40 min. Dynamic frames acquired during the equilibrium condition (pre-task: 30-50 min, task: 70-90 min, post-task: 110-120 min) were realigned to the first frame in pre-task condition. Intra-condition registrations between the frames were performed, and average image for each condition was created and registered to the pre-task image (inter-condition registration). Pre-task PET image was then co-registered to own MRI of each participant and transformation parameters were reapplied to the others. Volumes of interest (VOI) for dorsal putamen (PU) and caudate (CA), ventral striatum (VS), and cerebellum were defined on the MRI. Binding potential (BP) was measured and DAR was calculated as the percent change of BP during and after the task. SPM analyses on the BP parametric images were also performed to explore the regional difference in the effects of head motion on BP and DAR estimation. Results: Changes in position and orientation of the striatum during the PET scans were observed before the head motion correction. BP values at pre-task condition were not changed significantly after the intra-condition registration. However, the BP values during and after the task and DAR were significantly changed after the correction. SPM analysis also showed that the extent and significance of the BP differences were significantly changed by the head motion correction and such changes were prominent in periphery of the striatum. Conclusion: The results suggest that misalignment of MRI-based VOI and the striatum in PET images and incorrect DAR estimation due to the head motion during the PET activation study were significant, but could be remedied by the data-driven head motion correction.

Expression of Nesfatin-1/NUCB2 and Its Binding Site in Mouse Ovary (생쥐 난소 내 Nesfatin-1/NUCB2 발현과 결합 부위 확인)

  • Kim, Jin-Hee;Youn, Mi-Ra;Bang, So-Young;Sim, Ji-Yeon;Kang, Hee-Rae;Yang, Hyun-Won
    • Development and Reproduction
    • /
    • v.14 no.4
    • /
    • pp.287-295
    • /
    • 2010
  • It was recently reported that nesfatin-1/NUCB2, which is secreted from the brain, controls appetite and energy metabolism. The purpose of this research was to confirm whether or not the protein and its binding site should have been expressed in the mouse reproductive organs and to know the possible effects of nesfatin-1 on the reproductive function. Using the ICR female mouse ovary and uterus, the expression of NUCB2 mRNA was confirmed with the conventional PCR and the relative amount of NUCB2 mRNA in the tissues was analyzed with real-time PCR. Immunohistochemical staining was performed using the nesfatin-1 antibody to investigate the nesfatin-1 protein expression and the biotin conjugated nesfatin-1 to confirm the binding site for nesfatin-1 in the ovary. Furthermore, in order to examine if the expression of NUCB2 mRNA in the ovary and uterus is affected by gonadotropin, its mRNA expression was analyzed after PMSG administration into mice. As a result, the expression level of NUCB2 mRNA in the ovary and the uterus was as much as the expression level in hypothalamus. As a result of the immunohistochemical staining, nesfatin-1 proteins were localized at the theca cells, the interstitial cells, and some of the luteal cells. However, the granulosa cells in the follicles did not stain. Interestingly, the oocytes in the some follicles were stained with nesfatin-1. On the other hand, nesfatin-1 protein binding sites were displayed at the theca cells and the interstitial cells near the tunica albuginea. After PMSG administration the expression level of NUCB2 mRNA was increased in the ovary and the uterus. These results demonstrate that for the first time the nesfatin-1 and its binding site were expressed in the ovary and NUCB2 mRNA expression was controlled by gonadotropin, suggesting an important role in the reproductive organs as a local regulator. Therefore, further study is needed to elucidate the functions of nesfatin-1 on the reproductive organs.

The Effects of Microcurrent Stimulation on the Astrocytes Proliferation at Injured Brain of Rabbit (극저전류자극이 손상된 토끼 뇌의 별아교세포 증식에 미치는 효과)

  • Kim, Ji-Sung;Min, Kyoung-Ok
    • Journal of Korean Physical Therapy Science
    • /
    • v.9 no.3
    • /
    • pp.107-119
    • /
    • 2002
  • Astrocyte, which shares the greatest part of the brain (about 25%), is a land of glial cell that composes the central nervous system along with microglia, ependymal cell and oligodendroglia. It has 7-9nm of fibers in its cytoplasma, which are composed of glial fibrillary acidic protein (GFAP) and vimentin. As for the functions of the astrocyte, it has, so far, been supposed that the astrocyte will play a cytoskeletal role in maintaining the structure of the cerebrum, play a role as a blood-brain barrier so that it can induce migration of the neuron in its development and substances in the blood cannot go into the nervous tissue, and a role of immunology and phagocytosis. However, it was revealed today that it will be a role in preventing expansion of injury by attaching itself to the connective tissue such as the vessel and the pia mater when the nervous tissue or the arachnoid is injured. Microcurrent stimulation can control current, on the basis of A unit. That is, with such devices using it, it is possible to sense, from the outside, the injured current(wound current) of the lesion and to change it into the normal current, thereby promoting the restoration of the cells. In order to examine the effects of microcurrent stimulation on the injured astrocytes in the rabbits, this study was conducted with 24 New Zealand White Rabbit as its subjects, which were divided into 8 animals of the experiment group and 16 animals of the control group. After the animals in the experiment group were fixed to the stereotaxic apparatus, their hair was removed and their premotor area(association area) perforated by the micro-drill for skull-perforation with the depth of 8mm from the scalp. In one week after the injury, 4 animals in the control group and 8 animals in the experiment group were sacrificed and examined with immunohistochemical method. And in three weeks, the remaining 4 animals in the control group and 8 animals in the experiment group were also sacrificed and examined with the same way. The conclusion has been drawn as follows : In the control group sacrificed in one week after the injury, the astrocytes somewhat increased, compared with the normal animals, and in the group sacrificed in three weeks after the injury, they increased more (p < 0.05). The experiment group A in one week showed a little increase, but there was no significant differences, but the experiment group in three weeks showed more increase, compared with the experiment group in one week (p < 0.05). The experiment group B in one week showed more increase than the control group or the experiment group A, and the experiment group in three weeks showed more increase than the experiment group in one week (p < 0.05). Among the astrocytes, fibrous astrocytes were mostly observed, increasing as they are close to the lesion, and decreasing as they are remote from it. The findings show that microcurrent can cause the astrocytes to proliferate and that it will be more effective to stimulate the cervical part somewhat remote from the lesion rather than to directly stimulate the part of the lesion. Thus, microcurrent stimulation can be one of the methods that can activate the reaction of astrocytes, which is one of the mechanism for treating cerebral injury with hemorrhage. Therefore, this study will be used as basic research data for promoting restoration of functions in the patient with injury in the central nervous system.

  • PDF

Increased Matrix Metalloproteinase-9 and Tissue Inhibitor of Metalloproteinase-1 Levels in the Cerebrospinal Fluid from Children with Aseptic Meningitis (무균성 뇌수막염 소아에서 뇌척수액내 Matrix Metalloproteinase(MMP)-9과 Tissue Inhibitor of Metalloproteinase(TIMP)-1의 증가)

  • Yang, Ju Hee;Park, Min Hyuk;Shim, Jung-Yeon;Jung, Hye Lim;Park, Moon Soo;Keum, Dong Hyuck
    • Clinical and Experimental Pediatrics
    • /
    • v.46 no.6
    • /
    • pp.548-553
    • /
    • 2003
  • Purpose : Matrix metalloproteinase(MMP)-9 is known to breakdown the blood-brain barrier by degrading the extracellular matrix of the subendothelial basement membrane in meningitis. Tissue inhibitor of metalloproteinase(TIMP)-1, a known inhibitor of MMP-9, has been postulated to inhibit the proteolytic activity of MMP-9 by bindng to MMP-9, but their interaction has not been fully understood yet. So far, there have been some reports on the relationship of MMP-9 and TIMP-1 in bacterial meningitis, but few reports in viral meningitis. Furthermore, there has been no report on this in Korea. We investigated the concentrations of MMP-9 and TIMP-1 in cerebrospinal fluid (CSF) and serum of patients with viral meningitis and control subjects, and evaluated their relationship with other clinical parameters of meningitis. Methods : CSF and blood were obtained from 25 subjects with viral meningitis and 14 control subjects. After centrifugation, supernatants were stored at $-20^{\circ}C$ and we assayed concentrations of MMP-9 and TIMP-1 by the sandwich ELISA method. Results : Concentrations of CSF MMP-9 and TIMP-1 were significantly elevated in patients with viral meningitis, when compared with those in control subjects. Their serum levels showed no differences between the two groups. MMP-9 levels were closely correlated with TIMP-1 levels in the CSF($r_s=0.42$, P<0.05). CSF MMP-9/TIMP-1 ratios were significantly higher in patients with viral meningitis than those in the control subjects(P<0.05). Both CSF MMP-9 and TIMP-1 levels positively correlated with CSF total leukocyte counts($r_s=0.43$, P<0.05, $r_s=0.48$, P<0.05). TIMP-1 levels positively correlated with total protein concentrations in the CSF($r_s=0.43$, P<0.05). Conclusion : MMP-9 and TIMP-1 may play an important role in the breakdown and maintenance of BBB in viral meningitis, respectively.

The Role and Significance of Biomarker for Plasma G-CSF in Patients with Primary Lung Cancer (원발성 폐암에서 혈장 과립구 자극인자의 암표지자로서의 역할과 의의)

  • Song, Jung Sub;Kim, So Young;Jo, Hyang Jeong;Lee, Kang Kyoo;Shin, Jeong Hyun;Shin, Seong Nam;Kim, Dong;Park, Seong Hoon;Lee, Young Jin;Ko, Chang Bo;Lee, Mi Kung;Choi, Soon Ho;Jeong, Jong Hoon;Park, Jung Hyun;Kim, Hui Jung;Kim, Hak Ryul;Jeong, Eun Taik;Yang, Sei Hoon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.66 no.6
    • /
    • pp.444-450
    • /
    • 2009
  • Background: Biomarkers for cancer have several potential clinical uses, including the following: early cancer detection, monitoring for recurrence prognostication, and risk stratification. However, no biomarker has been shown to have adequate sensitivity and specificity. Many investigators have tried to validate biomarkers for the early detection and recurrence of lung cancer. To evaluate plasma G-CSF as such a biomarker, protein levels were measured and were found to correlate with the clinicopathological features of primary lung tumors. Methods: Between December 2006 and May 2008, 100 patients with histologically-validated primary lung cancer were enrolled into this study. To serve as controls, 127 healthy volunteers were enrolled into this study. Plasma G-CSF levels were measured in lung cancer patients using the sandwich ELISA system (R & D inc.) prior to treatment. Results: The mean plasma G-CSF levels were 12.2$\pm$0.3 pg/mL and 46.0$\pm$3.8 pg/mL (mean$\pm$SE) in the normal and in the cancer groups, respectively. In addition, plasma G-CSF levels were higher in patients with early lung cancer than in healthy volunteers (p<.001). Plasma G-CSF levels were higher in patients who were under 65 years old or smokers. Within the cancer group, plasma G-CSF levels were higher in patients with non small cell lung cancer than in patients with small cell lung cancer (p<.05). Overall, plasma G-CSF levels were shown to increase dependent upon the type of lung cancer diagnsosed. In the order from highest to lowest, the levels of plasma G-CSF tended to decrease in the following order: large cell carcinoma, squamous cell carcinoma, adenocarcinoma, and bronchioloalveolar carcinoma. Plasma G-CSF levels tended to be higher in patients with advanced TNM stage than in localized TNM stage (I, II

Effect of Acupuncture on the Expressions of Neuropeptide Y and Leptin Receptor in the Hypothalamus of Food-deprived Rats (침치료가 굶긴 쥐 시상하부에서 neuropeptide Y(NPY)와 leptin receptor(LR)의 발현에 미치는 영향에 대한 실험적 연구)

  • Kim, Mi-A;Jung, Woo-Sang;Moon, Sang-Kwan;Kim, Young-Suk;Kim, Chang-Ju;Cho, Ki-Ho
    • The Journal of Internal Korean Medicine
    • /
    • v.34 no.2
    • /
    • pp.113-121
    • /
    • 2013
  • Objectives : This study aimed to find out whether acupuncture at various acupoints shows any effects on appetite by regulating neurotransmitters in the hypothalamus through the expression of NPY and LR in the PVN via immunohistochemistry. Methods : Male Sprague-Dawley rats were divided into eight groups of five mice each. The rats in the acupuncture groups were treated with acupuncture at respective acupoints, twice per a day for 3 days. The animals were sacrificed 72 h after commencement of the experiment, the brains being dissected into serial coronal sections. Expressions of neuropeptide Y and leptin receptor in the hypothalamus were assessed by immunohistochemistry. Results : NPY expression in the PVN was enhanced and LR expression in the PVN was decreased by food deprivation. NPY immunoreactivity in the PVN of the food-derived rats was decreased by acupuncture at the auricular acupoint, Zusanli-acupoint, a and non-acupoint. However, acupuncture at the auricular acupoint showed most potent suppressing effect on NPY expression in the PVN of food-deprived rats. LR expression in the PVN decreased following food deprivation, and auricular acupuncture increased LR expression in the PVN of food-deprived rats. In normal conditions (fed state), LR expression in the PVN was not changed by acupuncture treatment at several sites. Conclusions : From this study, we have shown that acupuncture at the auricular acupoint exerts the most potent appetite suppressing effect on the food restriction state.

Comparison of the Medication Effects between Milnacipran and Pregabalin in Fibromyalgia Syndrome Using a Functional MRI: a Follow-up Study (섬유근통 환자에 대한 Milnacipran과 Pregabalin 약물치료에 대한 기능적 자기공명영상에서의 후속 영향 비교)

  • Kang, Min Jae;Mun, Chi-Woong;Lee, Young Ho;Kim, Seong-Ho
    • Investigative Magnetic Resonance Imaging
    • /
    • v.18 no.4
    • /
    • pp.341-351
    • /
    • 2014
  • Purpose : In this study, the medication effects of Milnacipran and Pregabalin, as well known as fibromyalgia treatment medicine, in fibromyalgia syndrome patients were compared through the change of BOLD signal in pain related functional MRI. Materials and Methods: Twenty fibromyalgia syndrome patients were enrolled in this study and they were separated into two groups according to the treatment medicine: 10 Milnacipran (MLN) treatment group and 7 Pregabalin (PGB) treatment group. For accurate diagnosis, all patients underwent several clinical tests. Pre-treated and post-treated fMRI image with block-designed pressure-pain stimulation for each group were obtained to conduct the statistical analysis of paired t-test and two sample t-test. All statistical significant level was less than 0.05. Results: In clinical tests, the clinical scores of the two groups were not significantly different at pre-treatment stage. But, PGB treatment group had lower Widespread Pain Index (WPI) and Brief Fatigue Inventory (BFI) score than those of MLN treatment group at post-treatment stage. In functional image analysis, BOLD signal of PGB treatment group was higher BOLD signal at several regions including anterior cingulate and insula than MLN treatment group at post-treatment stage. Also, paired t-test values of the BOLD signal in MLN group decreased in several regions including insula and thalamus as known as 'pain network'. In contrast, size and number of regions in which the BOLD signal decreased in PGB treatment group were smaller than those of MLN treatment group. Conclusion: This study showed that MLN group and PGB group have different medication effects. It is not surprising that MLN and PGB have not the same therapeutic effects since these two drugs have different medicinal mechanisms such as antidepressants and anti-seizure medication, respectively, and different detailed target of fibromyalgia syndrome treatment. Therefore, it is difficult to say which medicine will work better in this study.

Neural Bases of Empathy in Competitive vs. non-Competitive situation (경쟁과 비경쟁 상황에서 공감의 신경학적 기제)

  • Hwang, Su-Young;Yoon, Mi-Sun
    • Korean Journal of Cognitive Science
    • /
    • v.27 no.3
    • /
    • pp.441-467
    • /
    • 2016
  • This fMRI study is aim to investigate effects of competitive environment in cognitive empathic process in human brain. Empathy is known as a crucial factor for human's adaptive behavior in aspects of social cognition and it is almost automatic process, on the other hand competitive situation is psychologically devastated environment to win someone for getting rewards. We hypnotized that reading and understanding of other person's mind are a specific characteristic related to survival evolutionarily, however competition would have an effect on the empathic cognitive process because of mechanisms of competition. To manipulate the competitive atmosphere, one researcher took a role of competitor against participants and they were instructed to get monetary rewards when their performance was better than a competitor. 21 participants(9 males and 12 females) performed to judge the emotional valence of the empathic task consisted of illustrated images with various situation could be experienced in real world as on $1^{st}$ person perspective in both competitive and non-competitive condition, and did same performance with objects stimulus in control condition. In order to examine the competition effects on empathic process,, hemodynamic response were obtained during fMRI session and the imaging data were analyzed to identify brain regions where responses to each condition across the two consecutive runs. Participants' reaction time in competitive condition was faster statistically significant than non-competitive one. Activation for competitive condition increased in the following areas: ACC, mPFC, SMG, thalamus extended caudate and Nacc, parahippocampal gyrus, and for non-competitive condition increased paracingulate gyrus, temporal pole, vmPFC, superior occipital gyrus. As a result of regression analysis using empathic scores as covariance, the rSMG, IFG, fusiform gyrus, thalamus, putamen were correlated with higher empathic levels, and TPJ were correlated with lower empathic scores. We suggest that these observations could mean competitive environment have an effect on neural base of cognitive empathic process.