뇌정위적 방사선 수술 시 정확한 3차원적 선량분포에 대한 정보가 필요한다. 3차원적 치료계획은 최적선량분포를 얻기위한 것이며 환자 데이타, 선량분포, 방사선 조사 요소들에 대한 3차원적인 관계를 다루어야만 한다. 원형 조사면에 대한 single 조사면 선량 데이타와 3차원 선량 알고리듬을 이용하여 non-coplanar moving arcs 에 대한 3차원적 선량모델이 개발되었다. 뇌정위적 방사선 수술시 3차원 선량 알고리듬의 적용과 여러경우에 대한 응용에 대하여 논의되어진다.
자폐 스펙트럼 장애는 이질적인 신경 발달 장애로, 뇌기능영상에 기반한 기능적 연결성 행렬을 이용해 연구가 활발하게 진행된다. 기능적 연결성 행렬을 분석하기 위해 주성분 분석방법을 이용하며, 이를 통해 뇌의 기능적 경향성 패턴을 확인할 수 있다. 이 때, 서로 다른 연결성 성분 비율과 주성분 벡터를 이용해서 다양한 기능적 경향성 패턴을 얻을 수 있다. 패턴에 따른 랜덤 포레스트 분류 모델의 성능이 달라지는데 이를 비교해본 결과, 상위 50%의 성분을 이용하여 만든 기능적 경향성 패턴 1 이 데이터의 설명 비율도 높고, 우수한 분류 성능을 보이는 것을 확인했다.
뇌의 전기적 신경활동을 측정하는 뇌전도(EEG)는 저렴하게 취득할 수 있고 높은 시간 해상도를 갖는 반면 공간적 정보를 제공하지는 않는다. 기능적 자기공명영상(fMRI)은 혈류변화를 감지하여 뇌활동을 측정하는 방식으로서 높은 공간 분해능을 갖지만 고가의 비용과 설비를 요구한다. 최근 저렴하게 취득할 수 있는 EEG 데이터로부터 딥러닝을 사용하여 fMRI 합성영상을 생성하는 기술이 제안되었지만, 저주파수 대역에서 EEG와 fMRI 간의 뇌과학적 상관관계를 반영하지는 않는다. 본 연구에서는 휴식상태에서 취득된 EEG 데이터를 스펙트로그램으로 변환한 후 저주파수 특성을 사용하여 fMRI 합성영상을 생성하는 U-net 기반의 크로스 모달리티 변환 모델의 실현가능성을 평가하였다.
지난 20여 년 간 뇌 과학은 기능성 자기공명영상(fMRI) 등 새로운 기술에 힘입어 크게 발전했으며, 우리는 인간의 본성과 행동 변화에 대해 더욱 정확한 지식을 얻게 됐다. 이 같은 지식은 경영 분야에도 활발하게 응용되고 있다. 이 연구는 마이다스아이티의 사례를 통해 뇌과학을 경영에 어떻게 접목할 수 있는지 통찰을 얻는 것이 목적이다. 건설 소프트웨어 회사인 이 회사는 별도 조직을 두어 뇌 과학을 연구하고 있으며, 뇌 과학에 기반한 인사 정책을 만들어 시행하고 있다. 창업자 이형우 사장은 인본주의 경영 철학을 갖고 있으며, 뇌 과학 연구는 그 철학을 뒷받침한다. 연구 방법으로 사례연구 방법을 채택하였으며, 인터뷰와 직접 관찰, 참여 관찰, 문서 정보 등의 절차를 수행했다. 이 회사의 인적자원 관리 시스템은 뇌과학 연구가 응집된 'SCARF'라는 뇌과학 모델로 설명이 가능하다. 이 회사는 이 모델이 제시하는 것처럼 일터에서 지위감(Status), 확실성(Certainty), 자율감(Autonomy), 관계성(Relatedness), 공정성(Fariness) 위협을 줄임으로써 구성원의 신뢰와 만족도를 제고했고, 이는 창의적이고 고성과 조직이 되는 발판이 되었다.
본 연구는 사람의 뇌에 대한 자기공명영상에서 백질과 회백질을 분리하고 각각의 체적을 산출하기 위한 것이다. 일반적으로 치매나 다운증후군 같은 정신질환의 경우 백질 또는 회백질의 위축으로 인해 체적이 감소하게 되므로, 사람의 뇌에 대하여 백질과 회백질의 체적 산출을 통한 크기의 변화를 추적함으로서 여러 정신질환의 진단 및 조기 발견에 유용하게 이용될 수 있다. 그러나 일정한 두께의 단면을 촬영하여 단일의 명암 값으로 표현하는 자기공명영상기기의 특성상 번짐 현상을 보이는 자기공명영상으로부터 원래의 두께 안에 존재하는 각 성분의 부분체적을 산출할 수 없음으로 인해 백질과 회백질의 체적산출이 현재까지 불가능하였다. 따라서 본 논문에서는 번짐(blurred)을 보이는 자기공명영상에서 번진 명암 값을 해석하는 새로운 알고리즘에 의해 백질과 회백질의 부분체적을 산출하고, 이를 근거로 자기공명영상에서 백질과 회백질을 분리하기 위한 판별값을 결정하였으며, 결정된 판별값에 의해 분리된 영상에서 백질과 회백질의 체적을 산출하였다. 또한 제안된 알고리즘의 검증을 위해 인위적으로 생성된 모델에 알고리즘을 적용하여 산출된 결과를 원래의 모델과 비교하여 보았다.
본 연구는 생체 외 $^1H$ 고분해능 매직앵글스핀닝($^1H$ High-Resolution Magic Angle Spinning; $^1H$ HR MAS) 기술을 이용하여 정상군 adult mice의 뇌에서의 부위별 뇌 신경화학 대사물질(brain neurochemical metabolites)을 정량적으로 분석하고, 이를 이용하여 정상군의 뇌 대사물질의 표준 data base를 정립하기 위함이다. 실험에 사용된 adult mice는 C57BL/6J 모델의 체중 25~28 g, 40주령 수컷 10마리를 사용하였으며, 연령과 성별을 일치시켰다. 또한 뇌의 전두엽(frontal cortex), 측두엽(temporal cortex), 해마(hippocampus), 시상(thalamus) 총 4개의 부위를 채취하여 생체 외 $^1H$ 고분해능 매직앵글 스핀닝 실험을 진행 하였다. 생체 조직의 뇌 대사물질의 절대농도를 획득하기 위하여 대표적인 대사물질(Ace, NAA, NAAG, tCr, Cr, tCho, Cho, mIns, GPC+PC, Lac, GABA, Glu, Gln, tau, Ala)을 각 피크의 면적과 대사물질의 프로톤 개수를 계산하였다. 결과적으로 정상 군에서의 mice 뇌의 신경화학 대사물질들을 Acet, NAA, NAAG, Cho, mIns가 부위별로 절대농도차의 유의성을 나타내었으며, 이 외의 대사물질에서는 유의성이 없는 것으로 나타났다. 본 연구 결과를 토대로 $^1H$ HR-MAS을 이용한 생체조직 실험은 뇌조직 내 대사물질의 절대농도를 측정하고 기본적인 지표를 확보하는데 매우 정확하고 정량적인 방법이 될 수 있을 것으로 사료되며, 더 나아가 mice를 이용한 인간질병 모델의 실험동물에서의 뇌 신경화학 대사물질의 표준 자료화 하는데 도움이 될 수 있을 것으로 판단된다.
이 연구는 신경인성 방광 쥐 모델에서 줄기세포에 의해 발현된 뇌유래신경영양인자가 하부요로 증상에 미치는 영향을 조사하였다. 48마리의 Sprague-Dawley 쥐를 정상군, 하부요로증상군, 하부요로증상+imMSC군 및 하부요로증상+BDNF-eMSC군으로 무작위 선정하였다. 하부요로증상모델은 골반신경절 손상에 의해 유도되었으며 방광 기능평가는 마취 하에 실시하였고, 수축성 검사 및 웨스턴 블롯 분석을 위해 방광 조직을 절제하였다. 뇌유래신경영양인자 발현 중간엽줄기세포 치료가 하부요로증상에 미치는 영향도 평가되었으며 뇌유래신경영양인자 발현 중간엽줄기세포는 방광 조직의 섬유화를 억제하였고 Caspase-3 발현을 감소시켰다. 결론적으로, 뇌유래신경영양인자 발현 중간엽줄기세포는 하부요로증상 쥐 모델에서 세포 사멸의 억제와 함께 방광의 기능 및 수축성의 회복을 가져왔다.
BCI시스템은 뇌 자체에서 발생하는 전기적인 신호를 측정하여 콘트롤 또는 통신 시스템에 접목시키는 것이다. 이 시스템은 뇌파의 움직임을 실시간으로 검출하고 이를 통해 발생된 신호를 사용하여 전자장비 또는 소프트웨어에 바탕을 둔 프로세서 등을 조정할 수 있다. 본 논문에서는 다양한 정신 상태에서 발생한 뇌전위 신호를 분석하고 인식하는 뇌-컴퓨터간 인터페이스 시스템을 개발할 때 뇌파 측정시 혼합되는 잡음제거 및 분리에 관한 것을 다루고자 한다. BCI시스템 구현을 위한 뇌파 분류과정에서 이분법의 수리적 모델을 사용하여 뇌파를 분류하고 잡음구간을 추출하는 방법을 제안하였다.
최근 의료영상을 이용한 질병 진단법에 대한 관심이 증가하고 있는 추세이다. 관절경화증은 경동맥의 동맥을 좁게 하여 뇌로 들어가는 혈류의 일부 또는 전체를 차단하는 원인이 된다. 뇌로 흘러가는 혈류가 차단되는 경우 심각한 뇌졸중을 야기하기도 한다. 만일 초기에 경동맥 플라크를 발견하고 이를 치료하면 심각한 뇌졸중을 예방할 수 있다. 본 논문에서는 경동맥의 동맥 초음파 영상에서 경동맥 플라크를 쉽게 발견하기 위한 능동적 윤곽선 추출기법에 기반을 둔 자동 분할기법을 제안한다. 실험에서 사용되는 초음파 영상은 자동 분할기법을 적용하기 전에 적절히 정렬되어있다고 가정한다. 경동맥의 동맥 초음파 영상에 대하여 스네이크 모델을 이용하여 자동분할 방법과 수동분할 방법을 질적 비교한 결과 제안된 방법이 성공적으로 적용되었음을 보여준다. 실험결과 제안된 방법은 방사선사들이 플라크를 쉽게 찾는데 도움을 줄 수 있는 자동화 방법이 될 것으로 예상된다.
의료영상으로 생성된 데이터의 양은 전문적인 시각적 분석 한계를 점점 초과하여, 자동화된 의료영상 분석의 필요성이 증가되고 있는 실정이다. 이러한 이유 등으로 인하여 본 논문에서는 정상소견과 종양소견을 보이는 각각의 뇌 실질 MRI 의료영상을 이용하여 Inception V3 딥러닝 모델을 이용한 종양 유무에 따른 분류 및 정확도를 평가하였다. 연구 결과, 딥러닝 모델의 정확도 평가는 학습 데이터 세트의 경우 90%, 검증 데이터 세트의 경우 86%의 정확도를 나타내었다. 손실률 평가에서는 학습 데이터 세트의 경우 0.56, 검증 데이터 세트의 경우 1.28의 손실률을 나타내었다. 향 후 연구에서는 딥러닝 모델의 성능 향상 및 평가의 신뢰성 확보를 위하여 공개된 의료영상의 데이터를 충분히 확보하고, 라벨링 분류 작업을 통한 라벨링의 정확도를 개선하여 모델링을 구현해 볼 필요가 있다고 사료된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.