• Title/Summary/Keyword: 뇌연구

Search Result 2,111, Processing Time 0.027 seconds

Effect of forming groups according to the brain hemisphere preference on the cooperative problem solving learning achievement in the middle school technology (중학교 기술 교과의 협동적 문제해결학습에서 좌우뇌 선호도에 따른 소집단 구성이 학업성취도에 미치는 영향)

  • Park, Heon-Mi
    • 대한공업교육학회지
    • /
    • v.34 no.2
    • /
    • pp.205-229
    • /
    • 2009
  • The purpose of this study is to verify the effect of forming groups according to the brain hemisphere preference on the cooperative problem solving learning achievement in the middle school technology. The subjects of this study were 95 second grade boy students of a middle school in Daejeon and the measurement instrument of the left and right hemisphere preference is the Brain preference Indicator(BPI) which had been developed by Torrance et al(1977) and was adjusted by Ko, Younghee(1991). The academic achievement was analyzed on cognitive, psychomotor and affective domains. Derived results from this research are stated below: First, making groups according that the brain preference is more similar was more effective than making groups according to the high familiarity and the similarity of performance in the academic achievement of psychomotor and affective domains. Second, making groups according that the brain preference is more similar was more effective than making groups according that the brain preference is more diffrent for the academic achievement of affective domains on the cooperative problem solving learning in technology. Third, the academic achievement score of the right hemisphere preference group is higher than the score of the population in three domains. Also, the academic achievement score of the right hemisphere preference group is higher than the score of the left hemisphere preference group.

A Survey and Comparison of 3D Registration of Brain Images Between Marker Based and Feature Based Method (마커 기반과 특징기반에 기초한 뇌 영상의 3차원 정합방법의 비교 . 고찰)

  • 조동욱;김태우;신승수;김지영;김동원;조태경
    • The Journal of the Korea Contents Association
    • /
    • v.3 no.3
    • /
    • pp.85-97
    • /
    • 2003
  • Medical tomography images like CT, MRI, PET, SPECT, fMRI, ett have been widely used for diagnosis and treatment of a patient and for clinical study in hospital. In many cases, tomography images are scanned in several different modalities or with time intervals for a single subject for extracting complementary information and comparing one another. 3D image registration is mapping two sets of images for comparison onto common 3D coordinate space, and may be categorized to marker -based matching and feature-based matching. 3D registration of brain images has an important role for visual and quantitative analysis in localization of treatment area of a brain, brain functional research, brain mapping research, and so on. In this article, marker-based and feature-based matching methods which are often used are introduced.

  • PDF

Development of Human-Head-Mimicking Phantom for Brain Treatment Using Focused Ultrasound (집속 초음파 뇌 질환 치료를 위한 두부 유사 팬텀의 개발)

  • Min, Jeonghwa;Kim, Juyoung;Noh, Sicheol;Choi, Heungho
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.6
    • /
    • pp.433-439
    • /
    • 2013
  • In this study, human head-mimicking phantom was developed for brain disease treatment study using focused ultrasound. Acoustic parameters of skin, skull and brain were investigated through literature investigation and adequate substitutes according to each tissue were suggested. In the case of skin phantom, construction ratio of glycerol-based TMM phantom was controlled to mimic real skin. The suitability of skull substitutes was evaluated through measurement of acoustic parameters. In the case of brain phantom, transparent egg white phantom was used to observe thermal properties of focused ultrasound. Combined human-head-mimicking phantom using each substitutes was fabricated for development of brain disease treatment protocol. Denaturation of brain phantom according to ultrasonic condition was observed for validation.

Postural Control During Virtual Moving Surround Stimulation in Patients with Brain Injury (뇌기능 장애 환자의 가상 환경 움직임(Virtual Moving Surround) 자극에 따른 자세 균형 제어)

  • 김연희;최종덕;이성범;김종윤;이석준;박찬희;김남균
    • Science of Emotion and Sensibility
    • /
    • v.5 no.4
    • /
    • pp.67-75
    • /
    • 2002
  • The purpose of this study is to assess the ability of balance control in virtual moving surround stimulation using head mount display (HMD) device and force platform in patients with brain injury. Fifteen patients with stroke (mean age 54.47 yrs) and fifteen healthy normal persons participated. COP parameters were obtained total path distance, frequency of anterior-posterior and medial-lateral component by FFT analysis, weight-spectrum analysis in the two different conditions; (1) during comfortable standing with opened or closed eyes, (2) during virtual moving surround stimulation delivered using HMD with four different moving pattern. Moving patterns consisted of close-far, superior-inferior lilting (pitch) , right-left tilting (roll) and horizontal rotation (yaw) movement. In all parameters, the test-retest reliability was high. Also, the construct validity of virtual moving surround stimulation was excellent (p<0.05). A posturographic balance assessment system equiped with virtual moving surround stimulation using HMD is considered clinically useful in evaluation of balance control in patients with brain injury.

  • PDF

Fractional Anisotropy of Diffuse Tensor Imaging of Normal Subjects in the Regions of the Brain White Matter According to Age and Body Mass Index (BMI) (연령과 체질량지수(BMI)에 따른 뇌 백질 부위의 정상인 확산텐서영상 비등방도에 대한 연구)

  • Jeong, Jae Beom;Kwak, Jong Hyeok;Kim, Dong Hyeon
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.2
    • /
    • pp.253-260
    • /
    • 2018
  • Diffusion tensor images were obtained to investigate the damage of brain white matter in non-smokers and an adequate drinking group (less than 10 points) selected by scores of the Korean versions of alcohol use disorders identification test questionnaire. Factional anisotropy (FA) values, according to the variables of age and body mass index (BMI), were not statistically significant in all regions of the brain white matter after measurement of factional anisotropy (FA) values by the tract-based spatial statics (TBSS) method. In other words, age and body mass index (BMI) do not significantly affect the microstructural changes of the brain white matter.

The Influence of MR Gradient Acoustic Noise on fMRI (MR 경사 자계 소음이 뇌기능 영상에 미치는 영향)

  • S. C. Chung
    • Investigative Magnetic Resonance Imaging
    • /
    • v.2 no.1
    • /
    • pp.50-57
    • /
    • 1998
  • MR acoustic sound or noise due to gradient pulsings has been one of the problems in MRI, both in patient scanning as well as in many areas of psychiatric and neuroscience research, such as brain fMRI. Especially in brain fMRI, sound noise is one of the serious noise sources which obscures the small signals obtainable from the subtle changes occurring in oxygenation status in the cortex and blood capillaries. Therfore, we have studied the effects of acoustic or sound noise arising in fMR imaging of the auditory, motor and visual cortices. The results show that the acoustical noise effects on motor and visual responses are opposite. That is, for the motor activity, it shows an increased total motor activation while for the visual stimulation, corresponding(visual) cortical activity has diminished substantially when the subject is exposed to a loud acoustic sound. Although the current observations are preliminary and require more experimental confirmation, it appears that the observed acoustic-noise effects on brain functions, such as in the motor and visual cortices, are new observations and could have significant consequences in data observation and interpretation in future fMRI studies.

  • PDF

Brain Activation to Facial Expressions Among Alcoholics (알코올 중독자의 얼굴 표정 인식과 관련된 뇌 활성화 특성)

  • Park, Mi-Sook;Lee, Bae Hwan;Sohn, Jin-Hun
    • Science of Emotion and Sensibility
    • /
    • v.20 no.4
    • /
    • pp.1-14
    • /
    • 2017
  • The purpose of this study was to investigate the neural substrates for recognizing facial expressions among alcoholics by using functional magnetic resonance imaging (fMRI). Abstinent inpatient alcoholics (n=18 males) and demographically similar social drinkers (n=16 males) participated in the study. The participants viewed pictures from the Japanese Female Facial Expression Database (JAFFE) and evaluated intensity of facial expressions. the alcoholics had a reduced activation in the limbic areas including amygdala and hippocampus while recognizing the emotional facial expressions compared to the nonalcoholic controls. On the other hand, the alcoholics showed greater brain activations than the controls in the left lingual (BA 19)/fusiform gyrus, the left middle frontal gyrus (BA 8/9/46), and the right superior parietal lobule (BA 7) during the viewing of emotional faces. In sum, specific brain regions were identified that are associated with recognition of facial expressions among alcoholics. The implication of the present study could be used in developing intervention for alcoholism.

Feature-based Gene Classification and Region Clustering using Gene Expression Grid Data in Mouse Hippocampal Region (쥐 해마의 유전자 발현 그리드 데이터를 이용한 특징기반 유전자 분류 및 영역 군집화)

  • Kang, Mi-Sun;Kim, HyeRyun;Lee, Sukchan;Kim, Myoung-Hee
    • Journal of KIISE
    • /
    • v.43 no.1
    • /
    • pp.54-60
    • /
    • 2016
  • Brain gene expression information is closely related to the structural and functional characteristics of the brain. Thus, extensive research has been carried out on the relationship between gene expression patterns and the brain's structural organization. In this study, Principal Component Analysis was used to extract features of gene expression patterns, and genes were automatically classified by spatial distribution. Voxels were then clustered with classified specific region expressed genes. Finally, we visualized the clustering results for mouse hippocampal region gene expression with the Allen Brain Atlas. This experiment allowed us to classify the region-specific gene expression of the mouse hippocampal region and provided visualization of clustering results and a brain atlas in an integrated manner. This study has the potential to allow neuroscientists to search for experimental groups of genes more quickly and design an effective test according to the new form of data. It is also expected that it will enable the discovery of a more specific sub-region beyond the current known anatomical regions of the brain.

Brain Computer Interaction Based on Steady-State Visually Evoked Potential Evoked by High Frequencies (고주파수 시유발지속전위를 이용한 뇌-컴퓨터 인터랙션)

  • Mun, Sungchul;Park, Min-Chul
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.10a
    • /
    • pp.1765-1768
    • /
    • 2015
  • 3D 디스플레이 기술이 발달함에 따라 3 차원 공간에서의 뇌-컴퓨터 인터랙션 기술에 대한 관심이 높아지고 있다. 3D 디스플레이 기술은 사용자에게 실재감과 몰입감을 부여하여 특정 태스크를 수행할 때 사용자 태스크 퍼포먼스를 향상시킬 수 있다. 이와 같은 3D 입체감이 주는 긍정적 효과에 대한 연구는 교육, 주의력 향상, 엔터테인먼트를 목적으로 하는 뇌-컴퓨터 인터랙션 분야에서도 활발히 이루어지고 있다. 뇌-컴퓨터 인터랙션을 구성하는 뇌파성분에는 시각, 청각, 촉각 유발지속전위, 사건유발전위, 사건관련 동기/비동기화 성분, 느린 피질전위 등이 있다. 이 중 시유발 지속전위를 이용한 뇌-컴퓨터 인터랙션 기술은 오브젝트 콘트롤을 위한 사전훈련이 거의 요구되지 않으며 높은 정보전달율을 가지는 것을 특정으로 하기 때문에 최근 널리 사용되고 있다. 그러나 저주파수 대역의 명멸자극이 유발하는 피로감으로 인해 사용시간이 제한적인 한계점이 있다. 따라서, 본고에서는 유발뇌파의 일종인 시유발지속전위를 이용한 뇌-컴퓨터 인터랙션 기술을 소개하고 3D 홀로그램 인터랙션 수행 시 피로감을 최소화할 수 있는 방안에 대해 논의 하고자 한다.

A Review of Brain Imaging Studies on Classical Fear Conditioning and Extinction in Healthy Adults (건강한 성인에서의 고전적 공포 조건화 및 소거에 연관된 뇌 영역에 대한 뇌영상 연구 고찰)

  • Kang, Ilhyang;Suh, Chaewon;Yoon, Sujung;Kim, Jungyoon
    • Korean Journal of Biological Psychiatry
    • /
    • v.28 no.2
    • /
    • pp.23-35
    • /
    • 2021
  • Fear conditioning and extinction, which are adaptive processes to learn and avoid potential threats, have essential roles in the pathophysiology of anxiety disorders. Experimental fear conditioning and extinction have been used to identify the mechanism of fear and anxiety in humans. However, the brain-based mechanisms of fear conditioning and extinction are yet to be established. In the current review, we summarized the results of neuroimaging studies that examined the brain changes-functional activity and structures-regarding fear conditioning or extinction in healthy individuals. The functional activity of the amygdala, insula, anterior cingulate gyrus, ventromedial prefrontal cortex, and hippocampus changed dynamically with both fear conditioning and extinction. This review may provide an up-to-date summary that may broaden our understanding of pathophysiological mechanisms of anxiety disorder. In addition, the brain regions that are involved in the fear conditioning and extinction may be considered as potential treatment targets in the future studies.