• 제목/요약/키워드: 뇌기반 연구

검색결과 225건 처리시간 0.031초

SINGLE PHOTON EMISSION COMPUTED TOMOGRAPHY FINDINGS IN ATTENTION DEFICIT- HYPERACTIVITY DISORDER (주의력결핍 ${\cdot}$ 과잉운동장애의 단일광자방출 전산화단층촬영 소견에 관한 연구)

  • Cho, Soo-Churl;Lee, Myung-Chul;Moon, Dae-Hyuk
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • 제1권1호
    • /
    • pp.27-39
    • /
    • 1990
  • The neural mechanisms involved in attention deficit hyperactivity disorder are largely unknown. In order to investigate the neuroanatomical lesions of attention deficit hyperactivity disorders and their relationships with psychopathology, Single Photon Emission Computed Tomography(SPECT) using HMPAO was performed in 46 ADHDS and Yale Children's Inventory(YCI), Conners Parent Questionaire and DSM-III-R Questionaire for Disruptive Behavior Disorder were used to assess the psychopathology of ADHDS The results are summarized as follows; 1) 30.4% (14/46) of this series revealed decreased perfusion In SPECT. 2) Regions of hypoperfusion were seen in cerebral cortex(17.4%, 8/46), thalamus(13.0%, 6/46), deep gray matter(8.7%, 4/46), basal ganglia(6.5%, 3/46) and cerebellum(2.2%, 1/ 46). 3) The mean scores of the total YCI revealed significant difference between the two groups(SPECT abnormal versus normal group), and among the subscales, hyperactivity, language and fine-motor subscales showed significant differences between the two groups. Although the relationship between the abnormal findings and specific symptom clusters of ADHDS remains unclear, we can suggest that these abnormal findings could be associated with ADHD, and based on these findings, the ADHDS can be subclassified into two groups. This study can be said to reinforce the current conception of heterogeneity of ADHD.

  • PDF

Analysis of linguistic creativity according to the types of brain dominance for developing pre-service early childhood teachers' creativity teacher education program (예비유아교사의 창의성 교사교육 프로그램 개발을 위한 두뇌우성사고 유형에 따른 언어 창의성 분석 연구)

  • Kim, Hyoung-Jay;Kim, Hyung-Sook;Park, Hye-kyung
    • Journal of Digital Convergence
    • /
    • 제15권5호
    • /
    • pp.79-88
    • /
    • 2017
  • The purpose of this study was to identify the difference of creativity according to the type of brain dominance for deveoping pre-service early childhood teachers's creativity teacher education program. The subjects of this study were 210 pre-service early childhood teachers. The tests were conducted by using the Herrmann' BDI and TTCT: verbal. The study have applied Pearson product-moment correlation to find out relation between the type of brain dominance and creativity, and used multi-variate analysis to find out the difference of creativity according to the type of brain dominance. The results of the study are as follow; first, the upper left brain, lower left limb, and right brains had no relation to fluency, flexibility, originality and overall linguistic creativity. The lower right limb showed a positive correlation with fluency, flexibility, originality, and overall linguistic creativity. Second, the lower left, upper right lower, and lower right limb dominant teachers showed higher fluency, flexibility, originality and overall linguistic creativity than upper left neural dominant teachers. The result of analyzing the language creativity according to the type of brain dominance of the pre-service early childhood teachers will be used as a suggestion to develop the brain-based creativity teacher education program.

Development of PC Based Signal Postprocessing System in MR Spectroscopy: Normal Brain Spectrum in 1.5T MR Spectroscopy (PC를 이용한 자기공명분광 신호처리분석 시스템 개발: 1.5T MR Spectroscopy에서의 정상인 뇌 분광 신호)

  • 백문영;강원석;이현용;신운재;은충기
    • Investigative Magnetic Resonance Imaging
    • /
    • 제4권2호
    • /
    • pp.128-135
    • /
    • 2000
  • Purpose : The aim of this study is to develope the Magnetic Resonance Spectroscopy(MRS) data processing S/W which plays an important role as a diagnostic tool in clinical field. Materials and methods : Post-processing software of MRS based on graphical user interface(GUI) under windows operating system of personal computer(PC) was developed using MATLAB(Mathwork, U.S.A.). This tool contains many functions to increase the quality of spectrum data such as DC correction, zero filling, line broadening, Gauss-Lorentzian filtering, phase correction, etc. And we obtained the normal human brain $^1H$ MRS data from parietal white matter, basal ganglia and occipital grey matter region using 1.5T Gyroscan ACS-NT R6 (philips, Amsterdam, Netherland) MRS package. The analysis of the MRS peaks were performed by obtaining the ratio of peak area. Results : The peak ratios of NAA/Cr, Cho/Cr, MI/Cr for the different MRS machines have a little different values. But these peak ratios were not significantly different between different echo time MRS peak ratios in the same machine (p<0.05). Conclusion : MRS post-processing S/W based on GUI using PC was developed and applied to the analysis of normal human brain $^1H$ MRS. This independent MRS processing job increases the performance and throughput of patient scan of main console. Finally, we suggest that the database for normal in-yivo human MRS data should be obtained before clinical applications.

  • PDF

A Study on Wearable Emotion Monitoring System Under Natural Conditions Applying Noncontact Type Inductive Sensor (자연 상태에서의 인간감성 평가를 위한 비접촉식 인덕티브 센싱 기반의 착용형 센서 연구)

  • Hyun-Seung Cho;Jin-Hee Yang;Sang-Yeob Lee;Jeong-Whan Lee;Joo-Hyeon Lee;Hoon Kim
    • Science of Emotion and Sensibility
    • /
    • 제26권3호
    • /
    • pp.149-160
    • /
    • 2023
  • This study develops a time-varying system-based noncontact fabric sensor that can measure cerebral blood-flow signals to explore the possibility of brain blood-signal detection and emotional evaluation. The textile sensor was implemented as a coil-type sensor by combining 30 silver threads of 40 deniers and then embroidering it with the computer machine. For the cerebral blood-flow measurement experiment, subjects were asked to attach a coil-type sensor to the carotid artery area, wear an electrocardiogram (ECG) electrode and a respiration (RSP) measurement belt. In addition, Doppler ultrasonography was performed using an ultrasonic diagnostic device to measure the speed of blood flow. The subject was asked to wear Meta Quest 2, measure the blood-flow change signal when viewing the manipulated image visual stimulus, and fill out an emotional-evaluation questionnaire. The measurement results show that the textile-sensor-measured signal also changes with a change in the blood-flow rate signal measured using the Doppler ultrasonography. These findings verify that the cerebral blood-flow signal can be measured using a coil-type textile sensor. In addition, the HRV extracted from ECG and PLL signals (textile sensor signals) are calculated and compared for emotional evaluation. The comparison results show that for the change in the ratio because of the activation of the sympathetic and parasympathetic nervous systems due to visual stimulation, the values calculated using the textile sensor and ECG signals tend to be similar. In conclusion, a the proposed time-varying system-based coil-type textile sensor can be used to study changes in the cerebral blood flow and monitor emotions.

Probabilistic Anatomical Labeling of Brain Structures Using Statistical Probabilistic Anatomical Maps (확률 뇌 지도를 이용한 뇌 영역의 위치 정보 추출)

  • Kim, Jin-Su;Lee, Dong-Soo;Lee, Byung-Il;Lee, Jae-Sung;Shin, Hee-Won;Chung, June-Key;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • 제36권6호
    • /
    • pp.317-324
    • /
    • 2002
  • Purpose: The use of statistical parametric mapping (SPM) program has increased for the analysis of brain PET and SPECT images. Montreal Neurological Institute (MNI) coordinate is used in SPM program as a standard anatomical framework. While the most researchers look up Talairach atlas to report the localization of the activations detected in SPM program, there is significant disparity between MNI templates and Talairach atlas. That disparity between Talairach and MNI coordinates makes the interpretation of SPM result time consuming, subjective and inaccurate. The purpose of this study was to develop a program to provide objective anatomical information of each x-y-z position in ICBM coordinate. Materials and Methods: Program was designed to provide the anatomical information for the given x-y-z position in MNI coordinate based on the Statistical Probabilistic Anatomical Map (SPAM) images of ICBM. When x-y-z position was given to the program, names of the anatomical structures with non-zero probability and the probabilities that the given position belongs to the structures were tabulated. The program was coded using IDL and JAVA language for 4he easy transplantation to any operating system or platform. Utility of this program was shown by comparing the results of this program to those of SPM program. Preliminary validation study was peformed by applying this program to the analysis of PET brain activation study of human memory in which the anatomical information on the activated areas are previously known. Results: Real time retrieval of probabilistic information with 1 mm spatial resolution was archived using the programs. Validation study showed the relevance of this program: probability that the activated area for memory belonged to hippocampal formation was more than 80%. Conclusion: These programs will be useful for the result interpretation of the image analysis peformed on MNI coordinate, as done in SPM program.

Gait Analysis and Machine Learning-based Classification Model using Smart Insole for Alzheimer's Disease Severity Classification (스마트인솔 기반 알츠하이머 중증도 분류를 위한 보행 분석 및 기계학습 기반 분류 모델)

  • Jeon, YoungHoon;Ho, Thi Kieu Khanh;Gwak, Jeonghwan;Song, Jong-In
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 한국컴퓨터정보학회 2021년도 제64차 하계학술대회논문집 29권2호
    • /
    • pp.317-320
    • /
    • 2021
  • 본 연구는 주기적인 알츠하이머 병의 중증도 모니터링을 위해 스마트 인솔을 통한 보행 특징 추출과 머신러닝 기반 중증도 분류의 성능에 대해 살펴보았다. 최근 고령화가 가속화되는 추세에 있어 치매 환자가 급증하고 있으며, 중증도가 심해질수록 필요한 치료 비용 및 노력이 급증하기 때문에 조기 진단이 최선의 치료 전략으로 보여진다. 환자 친화적이고 저비용의 관성 측정 장치가 내장된 스마트 인솔만을 사용하여 다양한 보행 실험 패러다임에서 환자의 보행 특징을 추출하고, 이를 알츠하이머 병의 중증도 진단을 위한 머신러닝 기반 분류기를 훈련시켜 성능을 평가한 결과, 숫자세기와 같이 뇌에 부하를 주는 하위 작업이 포함된 복합 보행을 측정한 데이터셋을 사용하여 훈련된 분류 모델이 일반 걷기 데이터셋을 사용한 모델보다 성능이 높게 나타나는 것이 관찰되었다. 본 연구는 안전하고 환경적 제약이 적은 방법을 사용하여 시기 적절한 진단뿐만 아니라 주기적인 중증도 모니터링 시스템의 일환으로 활용될 수 있을 것이다.

  • PDF

Development of Evidence-Based Guideline for Fever Management of Critical Adult Patients with Brain Injury (성인 뇌 손상 발열 중환자를 위한 체온 중재 지침 개발)

  • Lee, Jung Min;Cho, Yong Ae;Yoon, Ji Hyun;Choi, Hye Ok;Kim, Nam Cho
    • Journal of Korean Clinical Nursing Research
    • /
    • 제22권3호
    • /
    • pp.265-275
    • /
    • 2016
  • Purpose: The purpose of this study was to develop an evidence-based guideline for fever management for critically ill adult patients after a brain injury. Methods: Development of the guideline process was done according to the De Novo development Korean Medical Guideline Information Center (KoMGI) and consists of 12 steps. Results: This developed guideline included 3 domains and 19 recommendations. The number of recommendations for each domain was 7 on measuring temperature, 9 on managing fever, and 3 on managing shivering. The level of evidence was as follows: 58% were at level I, and 42% at level II. Of the recommendations, 58% were graded as A, 37% as B, and 5% as C. Conclusion: These findings indicate that this guideline can be used as a guide for nursing in critically ill adult patients with brain injury. This guideline can also contribute to improvements in the quality of nursing care for critically ill adult patients with brain injury.

Intelligent Shape Analysis Using Multi-sensory Interaction (다중 감각 인터랙션을 이용한 지능형 형상 분석)

  • Kim, Jeong-Sik;Kim, Hyun-Joong;Choi, Soo-Mi
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 한국정보과학회 2006년도 가을 학술발표논문집 Vol.33 No.2 (A)
    • /
    • pp.139-142
    • /
    • 2006
  • 본 논문에서는 햅틱 피드백과 스테레오 비쥬얼 큐를 혼합한 다중 감각 기반의 지능형 3차원 형상 분석 방법을 소개한다. 지능형 형상 분석 방법은 3차원 모델의 구조에 대한 보다 상세한 정보를 제공한다. 특히 의료 분야에 사용될 경우 전문가의 개입을 최소화하여 질병 진단 및 치료 등에 사용될 수 있다. 본 연구에서는, MRI나 CT 영상으로부터 생성된 3차원 매개변수형 모델을 이용하여 유사 모델 집단을 대표하는 통계 형상을 구축한 후, SVM (Support Vector Machine) 학습 알고리즘을 이용하여 두 집단간 형상 차이를 분석한다. 3차원 형상에 대한 신속한 시각적 이해와 직관적 조작감은 물체 표면의 형상 변화를 분석하는데 효과적으로 사용될 수 있다. 본 논문에서는 물체 조작 및 관찰 등의 작업을 수행할 때, 햅틱 피드백과 스테레오 비쥬얼 큐를 혼합한 인터랙션 기법을 사용하여 공간감과 깊이감을 향상시켜 형상 분석 결과를 효과적으로 분석한다. 본 연구에서는 해마, 관상 동맥, 뇌와 같은 인체 장기를 실험 데이터로 사용하여 제안한 SVM 기반의 분석 방법과 인터랙션 환경의 성능을 평가한다. 본 연구에서 구현한 SVM 기반 이진 분류기는 두 집단간 형상 차이를 효과적으로 분석하며, 또한 다중 감각 인터랙션은 사용자가 분석 결과를 관찰하고 카메라 및 형상을 효율적으로 조작하는 데 도움을 준다.

  • PDF

Anatomical Brain Connectivity Map of Korean Children (한국 아동 집단의 구조 뇌연결지도)

  • Um, Min-Hee;Park, Bum-Hee;Park, Hae-Jeong
    • Investigative Magnetic Resonance Imaging
    • /
    • 제15권2호
    • /
    • pp.110-122
    • /
    • 2011
  • Purpose : The purpose of this study is to establish the method generating human brain anatomical connectivity from Korean children and evaluating the network topological properties using small-world network analysis. Materials and Methods : Using diffusion tensor images (DTI) and parcellation maps of structural MRIs acquired from twelve healthy Korean children, we generated a brain structural connectivity matrix for individual. We applied one sample t-test to the connectivity maps to derive a representative anatomical connectivity for the group. By spatially normalizing the white matter bundles of participants into a template standard space, we obtained the anatomical brain network model. Network properties including clustering coefficient, characteristic path length, and global/local efficiency were also calculated. Results : We found that the structural connectivity of Korean children group preserves the small-world properties. The anatomical connectivity map obtained in this study showed that children group had higher intra-hemispheric connectivity than inter-hemispheric connectivity. We also observed that the neural connectivity of the group is high between brain stem and motorsensory areas. Conclusion : We suggested a method to examine the anatomical brain network of Korean children group. The proposed method can be used to evaluate the efficiency of anatomical brain networks in people with disease.

Voxel-based Morphometry (VBM) Based Assessment of Gray Matter Loss in Medial Temporal Lobe Epilepsy: Comparison with FDG PET (화소기반 형태분석 방법을 이용한 내측측두엽 간질환자의 회백질 부피/농도 감소평가; FDG PET과의 비교)

  • Kang, Hye-Jin;Lee, Ho-Young;Lee, Jae-Sung;Kang, Eun-Joo;Lee, Sang-Gun;Chang, Kee-Hyun;Lee, Dong-Soo
    • The Korean Journal of Nuclear Medicine
    • /
    • 제38권1호
    • /
    • pp.30-40
    • /
    • 2004
  • Purpose: The aims of this study were to find brain regions in which gray matter volume was reduced and to show the capability of voxel-based morphometry (VBM) analysis for lateralizing epileptogenic zones in medial temporal lobe epilepsy (mTLE). The findings were compared with fluorodeoxyglucose positron omission tomography (FDG PET). Materials and Methods: MR T1-weighted images of 12 left mTLE and 11 right mTLE patients were compared with those of 37 normal controls. Images were transformed to standard MNI space and averaged in order to create study-specific brain template. Each image was normalized to this local template and brain tissues were segmented. Modulation VBM analysis was performed in order to observe gray matter volume change. Gray matter was smoothed with a Gaussian kernel. After these preprocessing, statistical analysis was peformed using statistical parametric mapping software (SPM99). FDG PET images were compared with those of 22 normal controls using SPM. Results: Gray matter volume was significantly reduced in the left amygdala and hippocampus in left mTLE. In addition, volume of cerebellum, anterior cingulate, and fusiform gyrus in both sides and left insula was reduced. In right mTLE, volume was reduced significantly in right hippocampus. In contrast, FDG uptake was decreased in broad areas of left or right temporal lobes in left TLE and right TLE, respectively. Conclusions: Gray matter loss was found in the ipsilateral hippocampus by modulation VBM analysis in medial temporal lobe epilepsy. This VBM analysis might be useful in lateralizing the epileptogenic zones in medial temporal lobe epilepsy, while SPM analysis of FDG PET disclosed hypometabolic epileptogenic zones.