• Title/Summary/Keyword: 뇌경색 부피

Search Result 1, Processing Time 0.016 seconds

Study on Volume Measurement of Cerebral Infarct using SVD and the Bayesian Algorithm (SVD와 Bayesian 알고리즘을 이용한 뇌경색 부피 측정에 관한 연구)

  • Kim, Do-Hun;Lee, Hyo-Young
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.5
    • /
    • pp.591-602
    • /
    • 2021
  • Acute ischemic stroke(AIS) should be diagnosed within a few hours of onset of cerebral infarction symptoms using diagnostic radiology. In this study, we evaluated the clinical usefulness of SVD and the Bayesian algorithm to measure the volume of cerebral infarction using computed tomography perfusion(CTP) imaging and magnetic resonance diffusion-weighted imaging(MR DWI). We retrospectively included 50 patients (male : female = 33 : 17) who visited the emergency department with symptoms of AIS from September 2017 to September 2020. The cerebral infarct volume measured by SVD and the Bayesian algorithm was analyzed using the Wilcoxon signed rank test and expressed as a median value and an interquartile range of 25 - 75 %. The core volume measured by SVD and the Bayesian algorithm using was CTP imaging was 18.07 (7.76 - 33.98) cc and 47.3 (23.76 - 79.11) cc, respectively, while the penumbra volume was 140.24 (117.8 - 176.89) cc and 105.05 (72.52 - 141.98) cc, respectively. The mismatch ratio was 7.56 % (4.36 - 15.26 %) and 2.08 % (1.68 - 2.77 %) for SVD and the Bayesian algorithm, respectively, and all the measured values had statistically significant differences (p < 0.05). Spearman's correlation analysis showed that the correlation coefficient of the cerebral infarct volume measured by the Bayesian algorithm using CTP imaging and MR DWI was higher than that of the cerebral infarct volume measured by SVD using CTP imaging and MR DWI (r = 0.915 vs. r = 0.763 ; p < 0.01). Furthermore, the results of the Bland Altman plot analysis demonstrated that the slope of the scatter plot of the cerebral infarct volume measured by the Bayesian algorithm using CTP imaging and MR DWI was more steady than that of the cerebral infarct volume measured by SVD using CTP imaging and MR DWI (y = -0.065 vs. y = -0.749), indicating that the Bayesian algorithm was more reliable than SVD. In conclusion, the Bayesian algorithm is more accurate than SVD in measuring cerebral infarct volume. Therefore, it can be useful in clinical utility.