• Title/Summary/Keyword: 높은 음압 환경

Search Result 16, Processing Time 0.018 seconds

Dynamic Response Analysis of Pipe Subjected to Underwater Explosion (수중폭발로 인한 파이프의 동적 응답해석)

  • Kim, Seongbeom;Lee, Kyungjae;Jung, Dongho;Park, Taehyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.1
    • /
    • pp.9-16
    • /
    • 2014
  • In recent years, the structural shock response to UNDEX (UNDerwater EXplosion) has been studied as much, or more, through numerical simulations than through testing for several reasons. Very high costs and sensitive environmental concerns have kept destructive underwater explosion testing to a minimum. Increase of simulation capabilities and sophisticated simulation tools has made numerical simulations more efficient analysis methods as well as more reliable testing aids. In this study, the main issue is the fluid-structure interaction. Here, appropriate relations between the acoustic pressure on the fluid surface and displacements on the structure surface are formed internally. The analysis was carried out using ABAQUS/Explicit and the results have been visualized in ABAQUS CAE. The shock loading history, acoustic pressure, stress of stand-off point, the velocity and strain energy time histories were presented.

Characteristics of the floor impact sound by water to binder ratio of mortar (마감모르타르 물결합재비에 따른 바닥충격음 특성 변화)

  • Lee, Won-Hak;Haan, Chan-Hoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.6
    • /
    • pp.671-677
    • /
    • 2021
  • The present study aims to investigate the influence of the water to binder ratio of finishing mortar on the floor impact sound of apartments. For this, same resilient materials Expanded Polystyrene (EPS) with constant dynamic stiffness and different mortar layers with 52 %, 66 % and 72 % water to binder ratio respectively were used to build floating floor structures on which floor impact sounds were measured in standard testing facilities. As a result, it was found that light-weight floor impact sound was transmitted well when the water to binder ratio was 52% due to the high density. In case of heavy-weight floor impact sounds, since water to binder ratio of finishing mortar becomes higher as the weight of upper layer of resilient material lighter, it was shown that the natural frequency of floating floor structure moves to 63 Hz bandwidth which eventually cause a higher sound pressure level of floor impact sound. Thus, effect of water to binder ratio of mortar on the heavy-weight floor impact sounds was investigated.

Effect of noise and reverberation on subjective measure of speech transmission performance for elderly person with hearing loss in residential space (주거 공간에서 고령자 청력손실을 고려한 소음 및 잔향에 따른 음성 전송 성능의 주관적 평가)

  • Oh, Yang Ki;Ryu, Jong-Kwan;Song, Han-Sol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.5
    • /
    • pp.369-377
    • /
    • 2018
  • This study investigated the effect of noise and reverberation on subjective measure of speech transmission performance for elderly person with hearing loss in residential space through listening test. Floor impact, road traffic, airborne, and drainage noise were employed as the residential noise, and several impulse responses were obtained through room acoustical computer simulation for an apartment building. Sound sources for the listening test consisted of residential noises and speech sounds for boh the young (the original sound) and the aged (the sound filtered out by filters with frequency responses of hearing loss of 65 years elderly person). In the listening test, subjects evaluated speech intelligibility and listening difficulty for the presented word ($L_{Aeq}$ 55 dB) at three noise levels ($L_{Aeq}$ 30, 40, 50 dB) and three reverberation times (0.5, 1.0, 1.5 s). Results showed that the residential space with noise level lower than equal to 50 dB ($L_{i,Fmax,AW}$) for jumping noise and 40 dB ($L_{Aeq}$) for road traffic, airborne, and drainage noise had speech intelligibility of 90 % and over and listening difficulty of 30 % and below. Speech intelligibility and listening difficulty for the aged sound source was shown to be 0 % ~ 5 % lower and 2 % ~ 20 % higher than those for the young sound source, respectively.

An Empirical Study of Soundproof wall with Reduced Wind Load (풍하중 저감형 방음판의 실증 연구)

  • Choi, Jin-Gyu;Lee, Chan-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.272-278
    • /
    • 2018
  • Traffic volume has been greatly increasing due to urban development and the improvement of living standards, and many complaints are being raised due to the increasing road noise. As a countermeasure against these problems, highly soundproof walls are installed on the sides of roads. However, the ability to bear wind loads is a major design requirement for soundproof walls, which contributes to the exponential increases in construction costs and restricts the height of the walls. The aim of this study is to improve the performance of soundproof walls and to dramatically reduce wind loads while maintaining excellent price competitiveness. Based on Helmholz's resonator theory, a new concept is proposed for a ventilation-type soundproofing plate that can pass through a fluid like air and reduce noise. A full-scale metal soundproofing plate was produced to satisfy the quality standards of highways by conducting a sound-pressure transmission-loss test, wind tunnel test, and material quality test. To verify the reliability, the wall was manufactured and installed, and the sound insulation effect was examined by measuring the noise over time. In the future, ventilated soundproof walls on roads could create a pleasant living environment due to the high noise-insulation effect.

Investigation of acoustic performances of the creative convergence classrooms in elementary schools (초등학교 창의융합교실의 음향성능 조사)

  • A-Hyeon Jo;Chan-Hoon Haan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.4
    • /
    • pp.285-297
    • /
    • 2023
  • The present study aims to investigate the acoustic performance of the creative convergence classrooms in Korea used by elementary school students under the age of 9 introduced through the school space innovation project. In order to do this, acoustic performances of three creative convergence classrooms were measured. The measured acoustic parameters were background noise levels, Reverberation Time (RT), D50, Speech Transmission Index (STI), and Inter-Aural Cross Correlation (IACC). Also, acoustic parameters including Transmission Loss (TL) and standardized level difference (DnT) have been measured for the analysis of sound insulation performance of walls. In addition, the noise level was measured according to the opening conditions of doors and windows in the classroom. As a result, background noise level was measured at an average of 28.0 dB(A) to 32.8 dB(A) when the air conditioner was not operated, and the RT did not exceed 0.6 s. There were differences in IACC according to various desk layouts, and IACC values were high in the center line and the seats near the sound source. In particular, higher IACC was measured at the seats on the center line facing the source squarely. Regarding noise level in the classroom according to the opening conditions of doors and windows, the standards were exceeded when all windows, or windows and doors front onto the corridor were opened.

Clustering and classification of residential noise sources in apartment buildings based on machine learning using spectral and temporal characteristics (주파수 및 시간 특성을 활용한 머신러닝 기반 공동주택 주거소음의 군집화 및 분류)

  • Jeong-hun Kim;Song-mi Lee;Su-hong Kim;Eun-sung Song;Jong-kwan Ryu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.6
    • /
    • pp.603-616
    • /
    • 2023
  • In this study, machine learning-based clustering and classification of residential noise in apartment buildings was conducted using frequency and temporal characteristics. First, a residential noise source dataset was constructed . The residential noise source dataset was consisted of floor impact, airborne, plumbing and equipment noise, environmental, and construction noise. The clustering of residential noise was performed by K-Means clustering method. For frequency characteristics, Leq and Lmax values were derived for 1/1 and 1/3 octave band for each sound source. For temporal characteristics, Leq values were derived at every 6 ms through sound pressure level analysis for 5 s. The number of k in K-Means clustering method was determined through the silhouette coefficient and elbow method. The clustering of residential noise source by frequency characteristic resulted in three clusters for both Leq and Lmax analysis. Temporal characteristic clustered residential noise source into 9 clusters for Leq and 11 clusters for Lmax. Clustering by frequency characteristic clustered according to the proportion of low frequency band. Then, to utilize the clustering results, the residential noise source was classified using three kinds of machine learning. The results of the residential noise classification showed the highest accuracy and f1-score for data labeled with Leq values in 1/3 octave bands, and the highest accuracy and f1-score for classifying residential noise sources with an Artificial Neural Network (ANN) model using both frequency and temporal features, with 93 % accuracy and 92 % f1-score.