• Title/Summary/Keyword: 농작물 피해

Search Result 189, Processing Time 0.032 seconds

Pathogen, Insect and Weed Control Effects of Secondary Metabolites from Plants (식물유래 2차 대사물질의 병충해 및 잡초 방제효과)

  • Kim, Jong-Bum
    • Applied Biological Chemistry
    • /
    • v.48 no.1
    • /
    • pp.1-15
    • /
    • 2005
  • Pathogens, insects and weeds have significantly reduced agricultural productivity. Thus, to increase the productivity, synthetic agricultural chemicals have been overused. However, these synthetic compounds that are different from natural products cannot be broken down easily in natural systems, causing the destruction of soil quality and agricultural environments and the gradually difficulty in continuous agriculture. Now agriculture is faced with the various problems of minimizing the damage in agricultural environments, securing the safety of human health, while simultaneously increasing agricultural productivity. Meanwhile, plants produce secondary metabolites to protect themselves from external invaders and to secure their region for survival. Plants infected with pathogens produce antibiotics phytoalexin; monocotyledonous plants produce flavonoids and diterpenoids phytoalexins, and dicotylodoneous plant, despite of infected pathogens, produce family-specific phytoalexin such as flavonoids in Leguminosae, indole derivatives in Cruciferae, sesquitepenoids in Solanaceae, coumarins in Umbelliferae, making the plant resistant to specific pathogen. Growth inhibitor or antifeedant substances to insects are terpenoids pyrethrin, azadirachtin, limonin, cedrelanoid, toosendanin and fraxinellone/dictamnine, and terpenoid-alkaloid mixed compounds sesquiterpene pyridine and norditerpenoids, and azepine-, amide-, loline-, stemofoline-, pyrrolizidine-alkaloids and so on. Also plants produces the substances to inhibit other plant growths to secure the regions for plant itself, which is including terpenoids essential oil and sesquiterpene lactone, and additionally, benzoxazinoids, glucosinolate, quassinoid, cyanogenic glycoside, saponin, sorgolennone, juglone and lots of other different of secondary metabolites. Hence, phytoalexin, an antibiotic compound produced by plants infected with pathogens, can be employed for pathogen control. Terpenoids and alkaloids inhibiting insect growth can be utilized for insect control. Allelochemicals, a compound released from a certain plant to hinder the growth of other plants for their survival, can be also used directly as a herbicides for weed control as well. Therefore, the use of the natural secondary metabolites for pest control might be one of the alternatives for environmentally friendly agriculture. However, the natural substances are destroyed easily causing low the pest-control efficacy, and also there is the limitation to producing the substances using plant cell. In the future, effects should be made to try to find the secondary metabolites with good pest-control effect and no harmful to human health. Also the biosynthetic pathways of secondary metabolites have to be elucidated continuously, and the metabolic engineering should be applied to improve transgenics having the resistance to specific pest.

Studies on lead uptake by crops and reduction of it's damage. -IV. Effects of application of calcium and phosphate materials on lead uptake by upland crops (농작물(農作物)에 대(對)한 납(Pb)의 흡수(吸收) 및 피해경감(被害輕減)에 관(關)한 연구(硏究) -IV. 밭작물(作物)의 납 흡수이행(吸收移行)과 석회(石灰) 및 인산(燐酸)의 영향(影響))

  • Kim, Bok-Young;Kim, Kyu-Sik;Han, Ki-Hak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.21 no.4
    • /
    • pp.426-433
    • /
    • 1988
  • A pot experiment was conducted to find out the effects of application of slacked lime and fused super-phosphate on the lead uptake of upland crops in a lead added soil. Lead concentration of the soils were adjusted to 0, 150, 300mg/kg respectively. The slacked lime was applied at the equivalent amount of lime requirement with extra 150kg/10a, and 2 times for the fused superphosphate. The results obtained were as follows: 1. Lead contents in crops increased in the order: sesame > maize > potato > sweet potato > soybean > green perilla > peanut > red bean. 2. Lead contents in parts of crops were increased in the order; root > stem > leaf > grain. 3. Increasing lead concentration in soils, lead content in the plant was increased and crops yield were decreased. 4. Lead contents in soybean and green perlilla were decreased in slacked lime application treatment. 5. The lead contents in leaf and grain of soybean and green perllila decreased with decreasing in the ratio of Pb/Ca+Mg equivalent in soil. 6. Grain yield were increased in slacked lime, but were decreased in fused superphosphate application treatment. 7. With increasing the soil Pb contents, calcium and phosphate contents were increased in leaf and stem, but calcium was decreased in roots. 8. $1N-NH_4$ OAC soluble Pb contents in soil were 26-50 ppm and 42-70 ppm, respectively, for 150mg/kg and 300mg/kg lead treatments. 9. The soil pH was increased in the order of slacked lime, fused superphosphate and nontreatment.

  • PDF

A standardized procedure on building spectral library for hazardous chemicals mixed in river flow using hyperspectral image (초분광 영상을 활용한 하천수 혼합 유해화학물질 표준 분광라이브러리 구축 방안)

  • Gwon, Yeonghwa;Kim, Dongsu;You, Hojun
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.10
    • /
    • pp.845-859
    • /
    • 2020
  • Climate change and recent heat waves have drawn public attention toward other environmental issues, such as water pollution in the form of algal blooms, chemical leaks, and oil spills. Water pollution by the leakage of chemicals may severely affect human health as well as contaminate the air, water, and soil and cause discoloration or death of crops that come in contact with these chemicals. Chemicals that may spill into water streams are often colorless and water-soluble, which makes it difficult to determine whether the water is polluted using the naked eye. When a chemical spill occurs, it is usually detected through a simple contact detection device by installing sensors at locations where leakage is likely to occur. The drawback with the approach using contact detection sensors is that it relies heavily on the skill of field workers. Moreover, these sensors are installed at a limited number of locations, so spill detection is not possible in areas where they are not installed. Recently hyperspectral images have been used to identify land cover and vegetation and to determine water quality by analyzing the inherent spectral characteristics of these materials. While hyperspectral sensors can potentially be used to detect chemical substances, there is currently a lack of research on the detection of chemicals in water streams using hyperspectral sensors. Therefore, this study utilized remote sensing techniques and the latest sensor technology to overcome the limitations of contact detection technology in detecting the leakage of hazardous chemical into aquatic systems. In this study, we aimed to determine whether 18 types of hazardous chemicals could be individually classified using hyperspectral image. To this end, we obtained hyperspectral images of each chemical to establish a spectral library. We expect that future studies will expand the spectral library database for hazardous chemicals and that verification of its application in water streams will be conducted so that it can be applied to real-time monitoring to facilitate rapid detection and response when a chemical spill has occurred.

Salinity Effects on Growth and Yield Components of Rice (관개용수내 염분농도가 벼 생육 및 수량에 미치는 영향)

  • Choi, Sun-Hwa;Kim, Ho-Il;Ahn, Yeul;Jang, Jeon-Ryeol;Oh, Jong-Min
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.2 s.107
    • /
    • pp.248-254
    • /
    • 2004
  • This study was conducted to investigate the effects of salinity in irrigation water on the growth, yield components, yield and grain quality of rice plant by the pot experiments. Irrigation waters were supplied with control and amended with NaCl at 1,000, 2,000, 3,000, 5,000, and 7,000 ${\mu}s\;cm^{-1}$ electrical conductivity. A randomized block design was used with four replicates for each treatment and control. As increasing salt concentration, plant height, tiller number, SPAD value, dry weight, content of N, P, and K, ripened grain ratio (%), 1,000 grain weight, and protein content (%) tended to decrease, especially, significant at 3,000 ${\mu}s\;cm^{-1}$ of salt level. Grain yield decreased significantly at all treatments. The percentage of head rice slightly tended to increase as the salt concentration due to the decrease of green kernel. The percentage of green kernel was significantly lower at 3,000 ${\mu}s\;cm^{-1}$ of salt level than the control.

Characteristics of Groundwater Quality for Agricultural Irrigation in Plastic Film House Using Multivariate Analysis (다변량분석법을 이용한 시설재배지 지하수 수질 특성)

  • Kim, Jin-Ho;Choi, Chul-Mann;Lee, Jong-Sik;Yun, Sun-Gang;Lee, Jung-Taek;Cho, Kwang-Rae;Lim, Su-Jung;Choi, Seung-Chul;Lee, Gyeong-Ja;Kwon, Yeu-Seok;Kyung, Ki-Chon;Uhm, Mi-Jeong;Kim, Hee-Kwon;Lee, You-Seok;Kim, Chan-Yong;Lee, Seong-Tae;Ryu, Jong-Su
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.1
    • /
    • pp.1-9
    • /
    • 2008
  • The main purpose of this study is to accumulate the fundamental data representing groundwater of plastic film houses by means of water quality and its multivariate statistical analysis. Groundwater samples were collected in every two years since 2000 to 2004 from total 211 sites. According to the result of water quality analysis, ground water quality was suitable for irrigation purpose averagely. Correlation analysis showed that EC was highest positively correlated with $Mg^{2+}$ to 0.810(p<0.01), 0.776(p<0.01) in April and July, respectively. $NO_3-N$ was highest positively correlated with T-N to 0.794(p<0.01) in October. This result shows that it can lead to a different result even in similar case sometimes. Four factors were extracted through factor analysis in April and July, but five factors were extracted in October. The proportions of cumulative variance by the factor were 64.9, 60.2, and 70.7 in April, July, and October, respectively. The first factor was highly related to anions and cations such as $Ca^{2+},\;Mg^{2+},\;Cl^-,\;{SO_4}^{2-}$, and EC in contrast to that of stream water. According to the cluster analysis, 211 sites are classified into four groups. Common type of ground water quality was shown in group A. The pH and $PO_4-P$ were highest in Group B. The anions and cations were highest in Group C. $COD_{Cr}$ was highest in Group D.

A New White Wheat Variety, "Jeokjoong" with High Yield, Good Noodle Quality and Moderate to Scab (백립계 다수성 붉은곰팡이병 중도저항성 제면용 밀 신품종 "적중밀")

  • Park, Chlul Soo;Heo, Hwa-Young;Kang, Moon-Suk;Lee, Chun-Kee;Park, Kwang-Geun;Park, Jong-Chul;Kim, Hong-Sik;Kim, Hag-Sin;Hwang, Jong-Jin;Cheong, Young-Keun;Kim, Jung-Gon
    • Korean Journal of Breeding Science
    • /
    • v.40 no.3
    • /
    • pp.308-313
    • /
    • 2008
  • "Jeokjoong", a white winter wheat (Triticum aestivum L.) variety was developed from the cross "Keumkang"/"Tapdong". "Jeokjoong" is an awned, semi-dwarf and soft white winter wheat, similar to "Keumkang" (check variety). The heading and maturing date of "Jeokjoong" were similar to "Keumkang". Culm and spike length of "Jeokjoong" were 78 cm and 7.5 cm, similar to "Keumkang". "Jeokjoong" had lower test weight (800 g) and lower 1,000-grain weight (40.1 g) than "Keumkang" (811 g and 44.0 g, respectively). It had resistance to winter hardiness, wet-soil tolerance and lodging tolerance. "Jeokjoong" showed moderate to scab in test of specific character although "Keumkang" is susceptible to scab. "Jeokjoong" had lower flour yield (69.2%) and ash content (0.36%) than "Keumkang" (72.0% and 0.41%, respectively) and similar flour color to "Keumkang". It showed lower protein content (8.9%) and SDS-sedimentation volume (36.8 ml) and shorter mixograph mixing time (3.5 min) than "Keumkang" (11.0%, 59.7 ml and 4.5 min, respectively). Amylose content and pasting properties of "Jeokjoong" were similar to "Keumkang". "Jeokjoong" had softer and more elastic texture of cooked noodles than "Keumkang". Average yield of "Jeokjoong" in the regional adaptation yield trial was 6.19 MT ha-1 in upland and 5.33 MT/ha in paddy field, which was 19% and 16% higher than those of "Keumkang" (5.21 MT/ha and 4.58 MT/ha, respectively). "Jeokjoong" would be suitable for the area above the daily minimum temperature of $-10^{\circ}C$ in January in Korean peninsula.

A New White Wheat Variety, "Baegjoong" with High Yield, Good Noodle Quality and Moderate to Pre-harvest Sprouting (백립계 다수성 수발아 중도저항성 제면용 밀 신품종 "백중밀")

  • Park, Chul Soo;Heo, Hwa-Young;Kang, Moon-Suk;Lee, Chun-Kee;Park, Kwang-Geun;Park, Jong-Chul;Kim, Hong-Sik;Kim, Hag-Sin;Hwang, Jong-Jin;Cheong, Young-Keun;Kim, Jung-Gon
    • Korean Journal of Breeding Science
    • /
    • v.40 no.2
    • /
    • pp.153-158
    • /
    • 2008
  • "Baegjoong", a white winter wheat (Triticum aestivum L.) cultivar was developed by the National Institute of Crop Science, RDA. It was derived from the cross "Keumkang"/"Olgeuru" during 1996. "Baegjoong" was evaluated as "Iksan307" in Advanced Yield Trial Test in 2004. It was tested in the regional yield trial test between 2005 and 2007. "Baegjoong" is an awned, semi-dwarf and soft white winter wheat, similar to "Keumkang" (check cultivar). The heading and maturing date of "Baegjoong" were similar to "Keumkang". Culm and spike length of "Baegjoong" were 77 cm and 7.5 cm, similar to "Keumkang". "Baegjoong" had lower test weight (802 g) and lower 1,000-grain weight (39.8 g) than "Keumkang" (811 g and 44.0 g, respectively). It had resistance to winter hardiness, wet-soil tolerance and lodging tolerance. "Baegjoong" showed moderate to pre-harvest sprouting (23.9%) although "Keumkang" is susceptible to pre-harvest sprouting (38.9%). "Baegjoong" had similar flour yield (72.4%) and ash content (0.41%) to "Keumkang" (72.0% and 0.41%, respectively) and similar flour color to "Keumkang". It showed lower protein content (8.8%) and SDS-sedimentation volume (35.3 ml) and shorter mixograph mixing time (3.8 min) than "Keumkang" (11.0%, 59.7 ml and 4.5 min, respectively). Amylose content and pasting properties of "Baegjoong" were similar to "Keumkang". "Baegjoong" had softer and more elastic texture of cooked noodles than "Keumkang". Average yield of "Baegjoong" in the regional adaptation yield trial was $5.88\;MT\;ha^{-1}$ in upland and 5.35 MT ha-1 in paddy field, which was 13% and 17% higher than those of "Keumkang" ($5.21\;MT\;ha^{-1}$ and $4.58\;MT\;ha^{-1}$, respectively). "Baegjoong" would be suitable for the area above the daily minimum temperature of $-10^{\circ}C$ in January in Korean peninsula.

'Chamol', an Early Maturing, High Yield, and Large-seed Soybean Cultivar for Double Cropping (이모작 적응 조숙 대립 다수성 콩 품종 '참올')

  • Ko, Jong Min;Kim, Hyun Tae;Han, Won Young;Baek, In Youl;Yun, Hong Tae;Lee, Young Hoon;Lee, Byong Won;Jeong, Chan Sik;Ha, Tae Joung;Shin, Sang Ouk;Park, Chang Hwan;Kim, Hong Sik;Seo, Jeong Hyun;Kang, Beom Kyu;Seo, Min Jeong;Choi, Kyu Hwan;Shin, Jeong Ho;Kwak, Do Yeon
    • Korean Journal of Breeding Science
    • /
    • v.50 no.4
    • /
    • pp.478-484
    • /
    • 2018
  • A soybean cultivar "Chamol" for double cropping for use as soy-paste and tofu was developed using a pedigree method in 2011 as a cross between "Shinpaldal2" and "Keunol." A promising line, SS99502-2B-89-1-3-4-1-1, was selected and designated as "Milyang210". It was promising and showed good results from regional yield trials (RYTs) for 3 years from 2009 to 2011 and released with the name "Chamol." It has a determinate growth habit, white flowers, gray pubescence, yellow seed coat, yellow hilum, spherical seed shape, and large seeds (27.7 g per 100 seeds). The maturity date of "Chamol" was September 18 (100 day growing period) in RYT and it is suitable for double cropping with winter crops such as onion. "Chamol" was resistant to bacterial pustule and soybean mosaic virus and tolerant to lodging in fields. Furthermore, the average yield of "Chamol" was 2.51 ton/ha in the regional yield trials conducted for 3 years from 2009 to 2011.

Deep Learning Approaches for Accurate Weed Area Assessment in Maize Fields (딥러닝 기반 옥수수 포장의 잡초 면적 평가)

  • Hyeok-jin Bak;Dongwon Kwon;Wan-Gyu Sang;Ho-young Ban;Sungyul Chang;Jae-Kyeong Baek;Yun-Ho Lee;Woo-jin Im;Myung-chul Seo;Jung-Il Cho
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.1
    • /
    • pp.17-27
    • /
    • 2023
  • Weeds are one of the factors that reduce crop yield through nutrient and photosynthetic competition. Quantification of weed density are an important part of making accurate decisions for precision weeding. In this study, we tried to quantify the density of weeds in images of maize fields taken by unmanned aerial vehicle (UAV). UAV image data collection took place in maize fields from May 17 to June 4, 2021, when maize was in its early growth stage. UAV images were labeled with pixels from maize and those without and the cropped to be used as the input data of the semantic segmentation network for the maize detection model. We trained a model to separate maize from background using the deep learning segmentation networks DeepLabV3+, U-Net, Linknet, and FPN. All four models showed pixel accuracy of 0.97, and the mIOU score was 0.76 and 0.74 in DeepLabV3+ and U-Net, higher than 0.69 for Linknet and FPN. Weed density was calculated as the difference between the green area classified as ExGR (Excess green-Excess red) and the maize area predicted by the model. Each image evaluated for weed density was recombined to quantify and visualize the distribution and density of weeds in a wide range of maize fields. We propose a method to quantify weed density for accurate weeding by effectively separating weeds, maize, and background from UAV images of maize fields.