• Title/Summary/Keyword: 농업 노즐

Search Result 64, Processing Time 0.028 seconds

Development of a Garlic Peeling System Using High-Pressure Water Jets (I) - Peeling tests with high-pressure plunger pumps and flat-spray nozzles - (습식 마늘박피 시스템 개발 (I) - 고압 플런저 펌프와 부채꼴 분사노즐을 이용한 박피 실험 -)

  • 양규원;배영환;백성기
    • Journal of Biosystems Engineering
    • /
    • v.29 no.3
    • /
    • pp.217-224
    • /
    • 2004
  • This research was conducted to test the feasibility of utilizing high-pressure water jets of over 1.0㎫ as a means of breaking and peeling garlic bulbs. High-pressure plunger pumps and flat-spray nozzles of varying orifice diameters and spray angles were utilized to supply water jets into a prototype peeling chamber made of transparent acrylic plates. Water jets were discharged from a total of six nozzles installed in such a way that three parallel nozzles face the other three. The cross-sectional area of the peeling chamber and the installation angle of the nozzles had critical effects on peeling performance. Small cross-sectional area was required so that total impact force of water jets on garlic could be increased. The optimum installation angles were around 4, 8, and 16$^{\circ}$ for the nozzles having 15, 40, and 65$^{\circ}$ spray angles, respectively. Best performance with 61.4% of completely-peeled garlics was obtained at a pressure of 1.94㎫ and a flow rate of 9.07 $\ell$/min for each nozzle. The peeling efficiency of the system was generally unsatisfactory due to the limited flow rate of the plunger pumps utilized. For better performance, it is recommended to increase flow rate while reducing operating pressure by utilizing other type of pumps.

Development of Digital Filter and Damper for Improving Accuracy of Measurement of Application Amount of Disinfectants of Disinfection Vehicle (방역차량의 약제 살포량 측정 정확성 개선을 위한 디지털 필터와 댐퍼 개발)

  • Baek, Seunghwan;Park, Donghyeok;Park, Hana;Lee, Chungu;Rhee, Joongyong
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.148-148
    • /
    • 2017
  • 방역 차량의 약액탱크, 차량의 연료, 워셔액 등의 탱크 내부에는 잔존량을 측정하기 위해 기둥과 floating box로 이루어진 부력식 수위레벨센서가 사용되고 있으나 액체레벨에 따라 float이 상하로 움직이는 측정원리상 차량 주행 중 정확성이 매우 떨어진다(Park et al. 2016). 방역차량이 주행 중 분사할 때, 슬로싱 현상과 방역소독기의 노즐과 펌프에서 발생하는 진동으로 인해 기존의 부력식 센서를 이용한 약제 살포량 측정방법은 정확성이 매우 떨어지는 경향이 있다. 본 연구의 목적은 방역차량이 주행하면서 분사할 때, 수위레벨 센서를 이용한 약제살포량 측정의 정확성을 개선하는 것으로 디지털 칼만필터, Low pass filter와 댐퍼를 제작하여 이용했다. 본 연구에서는 압력식 레벨센서를 이용해 약액탱크의 높이당 단면적과 수위를 측정하여 약제살포량을 계산했다. Python 2.7을 이용해 디지털 칼만필터와 Low pass filter(LPF)를 구현하였으며 3D프린터를 이용해 댐퍼를 제작했다. 실내에서 슬로싱 현상을 인공적으로 만들어 필터와 댐퍼의 수위 측정 정확성 개선효과를 확인 후 실제 방역차량에 부착하여 비포장도로에서 주행하면서 분사할 때 필터와 댐퍼의 효과를 확인하였다. 댐퍼의 공극률(p)을 바꿔가며 수위 측정 정확성 개선효과를 확인하였다. 실내, 현장 실험 결과, 칼만필터가 LPF보다 개선효과가 더 크지만 데이터 50개 처리에 1.71초의 시간지연이 발생했다. 댐퍼는 수위센서를 고정시키고 유체의 운동을 방해하여 이상치와 큰 오차제거에 효과적이었다. 칼만필터와 댐퍼를 동시에 이용할 경우, 수위 측정정확성 $R^2$는 0.9985, 0.9981로 ${\pm}4.3cm$의 범위내에서 수위를 측정할 수 있었다. 필터의 시간지연과 수위 측정정확성을 고려하여 데이터 기록간격을 3초로 설정하면 ${\pm}3cm$이내에서 약탱크 내 수위를 측정할 수 있었다. 공극률(p)가 0.294, 0.291, 0.17에서 측정정확성 $R^2$는 각각 0.9897, 0.9858, 0.9872 로 p가 0.294에서 개선효과가 가장 좋았으나 개선효과의 차이는 크지 않았다.

  • PDF

Study on Three-Dimensional Analysis of Agricultural Plants and Drone-Spray Pesticide (농작물을 위한 드론 분무 농약 살포의 3차원 분석에 관한 연구)

  • Moon, In Sik;Kown, Hyun Jin;Kim, Mi Hyeon;Chang, Se Myong;Ra, In Ho;Kim, Heung Tae
    • Smart Media Journal
    • /
    • v.9 no.4
    • /
    • pp.176-186
    • /
    • 2020
  • The size and shape of crops are diverse, and the growing environment is also different. Therefore, when one uses a drone to spray pesticides, the characteristics of each crop must be considered, and flight conditions such as the flight height and forwarding velocity of the drone should be changed. The droplet flow of pesticides is affected by various flight conditions, and a large change occurs in the sprayed area. As a result, an uneven distribution of liquid may be formed at the wake, and the transport efficiency will be decreased as well as there would be a risk of toxic scatter. Therefore, this paper analyzes the degree of distribution of pesticides to the crops through numerical analysis when pesticide is sprayed onto the selected three crops with different characteristics by using agricultural drones with different flight conditions. On the purpose of establishing a guideline for spraying pesticides using a drone in accordance with the characteristics of crops, this paper compares the amount of pesticides distributed in the crops at the wake of nozzle flow using the figure of merit, and the sum of transported liquid rate divided by the root mean square of the probability density function.

Development of Precision Overhead Watering and Boom Irrigation System for Fruit Vegetable Seedlings (과채류 육묘용 정밀 두상관수 시스템 개발)

  • Dong Hyeon Kang;Soon Joong Hong;Dong Eok Kim;Min Jung Park
    • Journal of Bio-Environment Control
    • /
    • v.32 no.1
    • /
    • pp.8-14
    • /
    • 2023
  • This study was conducted to develop a precision automatic irrigation system in a nursery by considering the problems and improvements of manual and the conventional automatic irrigation system. The amount of irrigated water between the conventional automatic irrigation system and manual irrigation was 28.7 ± 4.4 g and 14.2 ± 4.3 g, respectively, and the coefficient of variation was less than 30%. However, the coefficient of variation of the conventional automatic irrigation system of 15%, was higher than that of manual irrigation of 30%. The irrigation test using the developed uniform irrigation system attached with the nozzle of a spray angle 80° and most highest uniformity was at height 600 mm. And coefficient of variation of the irrigation uniformity at the center part was within 20%, but irrigation amount of the edge part was lower 50% and over compared to the center part. As a result of a tomato grafting seedling cultivation test using the developed uniform irrigation system, the average plant height of seedling at the edge part was 28 mm but plant height at the center part was higher as 72 mm. Therefore, it was necessary to apply additional irrigation device at the edge part. The irrigation uniformity of the edge concentrated irrigation system was investigated that the irrigation amount of the edge part was irrigated by more than 50% compared with the center part, and coefficient of variation of the irrigation amount at the center part was less than 30%. As a result of a cucumber grafting seedling cultivation test using the edge concentrated irrigation system, the plant height of seedlings in the edge and central part of cultivation bed were 24% and 26%, respectively, so irrigation uniformity was higher then the uniform irrigation system. In order to improve the uniformity of seedlings, it is necessary to adjust the height of boom according to the growth of the seedling by installing a distance sensor in the overhead watering and boom irrigation system.