• Title/Summary/Keyword: 농업용

Search Result 2,290, Processing Time 0.048 seconds

Study on Utilization and Prospect of Lignocellulosic Bioethanol in ASEAN Countries (주요 ASEAN 국가의 목질계 바이오에탄올의 활용 및 전망에 관한 연구)

  • Heo, Su Jung;Choi, Joon Weon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.5
    • /
    • pp.588-598
    • /
    • 2017
  • Currently, bioethanol, a fuel additive for transportation, is produced mainly by using biomass (first generation) such as corn and sugar canes. First generation biomass can cause various problems in terms of increase in agricultural prices and ethical reasons. To address these problems, a nonedible lignocellulosic biomass can be utilized. Agricultural byproducts such as straw, bagasse, and forest byproducts from the wood processing industry. Therefore, production of wood based bioethanol can be an effective utilization route of second generation biomass, and its raw materials are more abundant than first generation resources. Furthermore, it is possible to secure cheap raw materials. One of the biggest advantages of using biofuels is that it contributes to the reduction of greenhouse gases by minimizing the environmental impact, unlike fossil fuels. In this study, we investigated the greenhouse gas reduction effects that can be achieved through the use of Lignocellulosic bioethanol and government policies on renewable energy currently being implemented in ASEAN countries (Indonesia, Malaysia, Thailand and the Philippines). In these four countries, policies and incentives related to biofuels have been developed. It is expected that the reduction ratio of carbon dioxide emission and the mixed biofuel will be gradually increased in the future.

Optimization of Multi-reservoir Operation considering Water Demand Uncertainty in the Han River Basin (수요의 불확실성을 고려한 한강수계 댐 연계 운영 최적화)

  • Chung, Gun-Hui;Ryu, Gwan-Hyeong;Kim, Joong-Hoon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.1
    • /
    • pp.89-102
    • /
    • 2010
  • Future uncertainty on water demand caused by future climate condition and water consumption leads a difficulty to determine the reservoir operation rule for supplying sufficient water to users. It is, thus, important to operate reservoirs not only for distributing enough water to users using the limited water resources but also for preventing floods and drought under the unknown future condition. In this study, the reservoir storage is determined in the first stage when future condition is unknown, and then, water distribution to users and river stream is optimized using the available water resources from the first stage decision using 2-stage stochastic linear programming (2-SLP). The objective function is to minimize the difference between target and actual water storage in reservoirs and the water shortage in users and river stream. Hedging rule defined by a precaution against severe drought by restricting outflow when reservoir storage decreases below a target, is also applied in the reservoir operation rule for improving the model applicability to the real system. The developed model is applied in a system with five reservoirs in the Han River basin, Korea to optimize the multi-reservoir system under various future water demand scenarios. Three multi-purposed dams - Chungju, Hoengseong, and Soyanggang - are considered in the model. Gwangdong and Hwacheon dams are also considered in the system due to the large capacity of the reservoirs, but they are primarily for water supply and power generation, respectively. As a result, the water demand of users and river stream are satisfied in most cases. The reservoirs are operated successfully to store enough water during the wet season for preparing the coming drought and also for reducing downstream flood risk. The developed model can provide an effective guideline of multi-reservoir operation rules in the basin.

Survey on Pesticide Usage in Fruit Crops for the Development of Pesticide Use Indicator (농약사용 지표개발을 위한 과수용 농약사용량 조사분석)

  • Kwon, Oh-Kyung;Hong, Su-Myeong;Choi, Dal-Soon;Park, Chan-Won;Song, Byeong-Hun;Ryu, Gap-Hee;Oh, Byung-Youl
    • The Korean Journal of Pesticide Science
    • /
    • v.5 no.4
    • /
    • pp.40-44
    • /
    • 2001
  • Pesticide actual usage in fruit crop cultivation was surveyed, and usage trends of individual pesticides were evaluated to provide data for the development of indicators of environmental impact. The amount of pesticide used for fruit crops indicated the order of fungicide>insecticide>herbicide unlike the case of paddy rice. The fungicide rate of total usage was 72% in apple cultivation. Top ranking fungicides used on fruits were Mancozeb, Propineb, Thiophanate-methyl and the main insecticides were Mancozeb, Propineb, Thiophanate-methyl. The usuage by formulation types showed the order of WP>EC>SL>SC>SP>WG. Pesticide usage (a.i.) per hectare by different fruits was citrus 48.6kg, apple 27.1kg, pear 18.6kg, persimmon 17.5kg, peach 11.3kg and grape 9.2kg. Comparison of pesticide usage (a.i.,kg/ha) in some fruit crops between Korea and USA indicated that more pesticides were used for citrus, pear and peach in USA than Korea while more pesticides were used in Korea than USA for apple.

  • PDF

Monitoring of pesticide residues in water and soil at the Bokpocheon watershed in Yangpyong (남한강지류 복포천유역의 농약잔류량 조사)

  • Park, Kyung-Hun;Park, Byung-Joo;Lee, Byung-Moo;Choi, Ju-Hyeon;Kim, Chan-Sub;Jeong, Mi-Hye;Kim, Byung-Seok;Park, Hyeon-Ju
    • The Korean Journal of Pesticide Science
    • /
    • v.11 no.4
    • /
    • pp.230-237
    • /
    • 2007
  • This study was carried out to indicate the status of agricultural environment in Yangpyong area which is special protection area for tap water in Han river during three years($1996{\sim}1998$). The main study was on pesticide monitoring, analysis of pesticides in Bokpocheon water and soil. Water in this small river for supplying to the rice was found nine pesticides residues, ranged from 0.1 to 22.7 ppb, similar patterns from survey conducted in National Institute of Agricultural Science and technology, Soil in rice paddy has also low levels of eleven pesticide residues, ranged from 0.002 to 0.55 ppm.

Reducing Phytotoxic by Adjusted pH and Control effect of Loess-Sulfur Complex as Organic Farming Material against Powdery Mildew in Tomato (유기농자재인 황토유황합제의 약해 경감 및 흰가루병 방제효과)

  • Shim, Chang-Ki;Kim, Min-Jeong;Kim, Yong-Ki;Hong, Sung-Jun;Kim, Suk-Chul
    • The Korean Journal of Pesticide Science
    • /
    • v.18 no.4
    • /
    • pp.376-382
    • /
    • 2014
  • The soluble loess-sulfur mixture allowed standing to remove insoluble component materials for five weeks after manufacturing. We decreased the pH level of soluble loess-sulfur mixture at pH 1.0 modified with decreasing 25% sodium hydroxide than original content. The pH ranges of soluble loess-sulfur mixture solutions were adjusted to pH 5.0-pH 11.0 (pH 1 unit) with brown rice vinegar (pH 2.8). The pH of original loess-sulfur mixture was about pH 13 and damaged the foliar parts and young leaves of tomato after twice application. These stock solutions can be diluted 500:1 with tap water to make a 0.05% working solution and were sprayed two times with 7 days interval to the leaf and stem of tomato, which were spontaneously infected with E. cichoracearum. Control efficacy of powdery mildew ranged from 85% to 90% at 7 days after first application. After second application, each loess-sulfur mixture solutions adjusted pH level significantly suppressed the powdery mildew disease in tomato. Consequently, loess-sulfur complex adjusted pH level with brown rice vinegar was suggested to be low in acute toxicity at all different pH values and suggested to use an agent for control of tomato powdery mildew in organic farming.

Equilibrium Moisture Content of Korean Ginseng (인삼(人蔘)의 평형함수율(平衡含水率)에 관(關)한 연구(硏究))

  • Choi, B.M.;Lee, J.H.;Park, S.J.;Kim, C.S.;Rhee, J.Y.
    • Journal of Biosystems Engineering
    • /
    • v.17 no.3
    • /
    • pp.247-259
    • /
    • 1992
  • This study intended to measure the desorption and adsorption EMC of four years old Peeled ginseng, Unpeeled ginseng and Taegeuk ginseng under various conditions$20^{\circ}C$, $30^{\circ}C$, $40^{\circ}C$, $50^{\circ}C$) and five levels of relative humidity from 31% to 88%) by the static method. Four widely used EMC models were selected and evaluated. Also the empirical model was evaluated. The results are summarized as follows ; 1) EMC difference between ginseng size was not found but found between ginseng species. EMC difference between Peeled ginseng and Unpeeled ginseng was not found. EMC of Peeled ginseng and Unpeeled ginseng was higher than that of Taegeuk ginseng. 2) The hysteresis, which is difference between desorption and adsorption EMC, was found. Desorption EMC was higher than adsorption EMC. The hysteresis at the same temperature decreased as relative humidity increase. The difference of hysteresis between Peeled ginseng and Unpeeled ginseng was not large and the hysteresis of Taegeuk ginseng was smaller than those of other species. 3) Among the selected models, Henderson model was the best to predict the adsorption EMC of White ginseng(Peeled and Unpeeled ginseng), and Oswin model was the best to predict the desorption EMC of White ginseng and the desorption and adsorption EMC of Taegeuk ginseng. The models are as follows ; (a) White ginseng(Peeled and Unpeeled ginseng) ${\circ}$ Desorption EMC(Oswin model) : $$M=(0.1272-0.0007420T){\cdot}[RH/(1-RH)]^{(0.4164+0.001368T)}$$ ${\circ}$ Adsorption(Henderson model) : $$1-RH={\exp}[-0.0003480T_k\;{M_o}^{0.9231}]$$ (b) Taegeuk ginseng ${\circ}$ Desorption EMC(Oswin model) : $$M=(0.1051-0.0008439T)[RH/(1-RH)]^{(0.4553+0.003425T)}$$ ${\circ}$ Adsorption EMC(Oswin model) : $$M=(0.08247-0.0007559T){\cdot}[RH/(1-RH)]^{(0.5760+0.005540T)}$$ 4) The developed empirical models could predict the desorption and adsorption EMC for White and Taegeuk ginseng more precisely than selected models. The empirical models are as follows ; (a) White ginseng(Peeled and Unpeeled ginseng) ${\circ}$ Desorption EMC : $$M=0.124-0.000647T-0.216RH+0.373RH^2$$ ${\circ}$ Adsorption EMC : $$M=0.0879-0.000663T-0.197RH+0.399RH^2$$. (b) Taegeuk ginseng ${\circ}$ Desorption EMC : $$M=0.159-0.000728T-0.429RH+0.565RH^2$$ ${\circ}$ Adsorption EMC : $$M=0.123-0.000662T-0.384RH+0.555RH^2$$.

  • PDF

Analysis of Optimum Water Cooling Conditions and Heat Exchange of LED Lamps for Plant Growth (식물생장용 LED 램프의 적정 수냉조건 및 열교환량 분석)

  • Park, Jong-Ho;Lee, Jae-Su;Kim, Dong-Eok;Kim, Yong-Hyeon
    • Journal of Biosystems Engineering
    • /
    • v.36 no.5
    • /
    • pp.334-341
    • /
    • 2011
  • This study was conducted to compare the characteristics of heat dissipated from LED lamps with water cooling method and natural cooling method in a closed-type plant production system (CPPS) and to determine the optimum water temperature and flow rate for LED lamps with water cooling method. The experiments were performed in CPPS maintained at temperature of $24^{\circ}C$ and humidity of 70%. As compared to the LED lamps operated at water temperature of $22.5{\pm}1.2^{\circ}C$ and flow rate of $1,521{\pm}3.3\;mL{\cdot}min^{-1}$, air temperature under LED lamps with natural cooling was approximately increased by $1^{\circ}C$ and photosynthetic photon flux was decreased by $10{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. PPF illuminated from LED lamps was affected by forward voltage varied by the surface temperature of LED lamps. Forward voltage of LED lamps was decreased with increasing surface temperature and then PPF was proportionately decreased. Five levels ($14^{\circ}C,\;17^{\circ}C,\;20^{\circ}C,\;23^{\circ}C,\;26^{\circ}C$) of water temperature and three levels ($500\;mL{\cdot}min^{-1}$, $1,000\;mL{\cdot}min^{-1}$, $1,500\;mL{\cdot}min^{-1}$) of flow rate were provided to analyze the change of surface temperature and heat exchange of LED lamps. Heat exchange was increased with decreasing water temperature and increasing flow rate. At flow rate of $1,000-1,500\;mL{\cdot}min^{-1}$ and water temperature of 22.0-$22.6^{\circ}C$, surface temperature of LED lamps can be approached to $24^{\circ}C$ that was almost same as air temperature in CPPS. The calorific value generated from LED lamps used in the study was estimated to be $103.0\;kJ{\cdot}h^{-1}$.

Effects of Several Chemicals Treatment for Cocoon Sericin (견층(繭層) Sericin에 대(對)한 몇 가지 화학약제(化學藥劑) 처리(處理)의 효과(效果))

  • Rhee, In Jeon;Lee, Dong Soo;Cheon, Seung Rok
    • Current Research on Agriculture and Life Sciences
    • /
    • v.3
    • /
    • pp.70-78
    • /
    • 1985
  • The purpose of this study was to find out effects of several chemicals treatment for cocoon sericin. and there was several results of use to control the solubility of cocoon sericin in water. The results obtained was summarized as follows ; The chemicals which showed the strongest accelerating power on the solubility of cocoon sericin in water was sodium peroxide ($Na_2O_2$), the second was sodium carbonate ($Na_2CO_3$), the third was sodium sulfite ($Na_2SO_3$), the weakest was ammonia water ($NH_4OH$) in order among noticed silk-reeling accelerators. The chemicals which showed the inhibiting power on the solubility of cocoon sericin in water was tannic acid ($C_{14}H_{10}O_9$), the second was stannic acid ($Sn(OH)_4$), the third was formic acid (HCOOH) and the weakest was methyl alcohol ($CH_3OH$) in order among noticed silk-reeling inhibitors. Particulary stannic acid and formic acid showed accelerating power on the solubility of cocoon sericin at high temperature over 100 degrees of celsius thermometer in water Methyl alcohol did not show the inhibiting power on the solubility of cocoon sericin in low concentration. (at 1,500-2,000 times)

  • PDF

Purification and Characterization of Cholesterol Oxidase Produced by Streptomyces polychromogenes IFO 13072. (Streptomyces polychromogenes IFO 13072가 생산하는 Cholesterol Oxidase의 정제 및 효소학적 특성)

  • 김현수;성림식;이경화;이용직;이인선;유대식
    • Microbiology and Biotechnology Letters
    • /
    • v.30 no.2
    • /
    • pp.142-150
    • /
    • 2002
  • Streptomyces polychromogenes IFO 13072 was used as a strain producing cholesterol oxidase(EC 1.1.3.6). The conditions of cholesterol oxidase production were investigated. The optimum composition of medium for production of the enzyme was 1% dextrin, 0.5% casamino acid, 0.1% $KH_2$PO$_4$, 0.5% $NaNO_3$ and 0.05% $MgSO_4$(pH 7.3). The enzyme was purified specifically by cholesterol affinity column chromatography with a yield of 23.2%. The purified enzyme showed a single polypeptide on SDS-PAGE and the molecular weight was estimated about 52,000 daltons. The optimum pH and temperature of the cholesterol oxidase were pH 7.0 and $37^{\circ}C$, respectively. The enzyme was stable in the range of pH 6.0~7.0 and $25^{\circ}C$. The cholesterol oxidase activity was strongly inhibited by metal ions such as $Hg^{2+}$ and $Fe^{2+}$ and inhibitors such as dithiothreitol, mercaptoethanol and isonicotinic acid. The Michaelis constant(Km) for the cholesterol was found to be 25 mM by Lineweaver-Burk plot analysis.

Water Quality Modeling of Juam Lake by Fuzzy Simulation Method (퍼지 Simulation 방법에 의한 주암호의 수질모델링)

  • Lee, Yong Woon;Hwang, Yun Ae;Lee, Sung Woo;Chung, Seon Yong;Choi, Jung Wook
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.3
    • /
    • pp.535-546
    • /
    • 2000
  • Juam lake is a major water resource for the industrial and agricultural activities as well as the resident life of Kwangju and Chonnam area. However, the water quality of the lake is getting worse due to a large quantity of pollutant inflowing to the lake. As a preliminary step in making the countermeasure to achieve the water quality goal of the lake. it is necessary to understand how the water quality of the lake will be in future. Several computer programs can be used to predict the water quality of lake. Each of these programs requires a number of input data such as hydrological and meteorological data. and the quantity of the pollutant inflowed. but some or most of the input data contain uncertainty. which eventually results in the uncertainty of prediction value (future level of water quality). Generally. the uncetainty stems from the lack of information available. the randomness of future situation. and the incomplete knowledge of expert. Thus. the purpose of this study is to present a method for representing the degree of the uncertainty contained in input data by applying fuzzy theory and incorporating it directly into the water quality modeling process. By using the method. the prediction on the future water quality level of Juam lake can be made that is more appropriate and realistic than the one made without taking uncertainty in account.

  • PDF