• Title/Summary/Keyword: 농업에너지

Search Result 555, Processing Time 0.032 seconds

Simulation of Natural Air Layer Drying of Rough Rice (시뮬레이숀에 의한 벼의 상온통풍층건조방법(常温通風層乾燥方法)에 관(關)한 연구(硏究))

  • Park, Jae Bok;Koh, Hak Kyun;Chung, Chang Joo
    • Journal of Biosystems Engineering
    • /
    • v.8 no.1
    • /
    • pp.47-60
    • /
    • 1983
  • 상온통풍(常溫通風)을 이용(利用)한 In-bin drying에 대(對)한 많은 실험결과(實驗結果)에 의(依)하면 우리나라 10월(月)의 기상조건(氣象條件)은 저온건조(低溫乾燥) system에 적합(適合)한 건조능력(乾燥能力)을 가지고 있는 것으로 나타났다. 최근(最近) Computer를 이용(利用)한 Simulation model이 개발(開發)되어 건조현상(乾操現象)에 관(關)한 경제적(經濟的)이고 효율적(效率的)인 분석(分析)이 가능(可能)하게 되었다. 이러한 분석결과(分析結果)에 의(依)하면 초기함수율(初期含水率)이 높은 벼를 Full-bin을 이용(利用)한 상온통풍건조(常溫通風乾操)를 할 경우(境遇) 건조기간(乾燥期間)이 길어지며 bin내(內)의 상층부(上層部) 곡물(穀物)이 변질(變質)되는 문제점(問題點)이 발생(發生)하였다. 또한 벼의 수확작업체계(收穫作業體系)가 관행(慣行) 및 Binder작업체계(作業體系)에서 점차(漸次) Combine작업체계(作業體系)로 전환(轉換)되어감에 따라 포장(圃場)에서의 건조(乾燥)가 어려우며 예취(刈取), 탈곡작업과정(脫穀作業過程)에서의 기계적(機械的)인 곡물(穀物) 손실(損失)을 줄이기 위(爲)하여 함수율(含水率)이 비교적(比較的) 높은 벼를 수확(收穫)하여야 한다. 본(本) 연구(硏究)의 목적(目的)은 상온통풍건조(常溫通風乾燥)에 있어서 건조능력(乾燥能力)을 증가(增加)시키기 위(爲)하여 곡물(穀物)을 일정기간(一定期間) 나누어서 bin에 넣고 건조(乾燥)를 하는 Layer drying의 Simulation model을 개발(開發)하고 이 Model에 수원지방(水原地方)의 7년간(年間) 평균(平均) 기상자료(氣象資料)를 입력(入力)시켜 곡물(穀物)의 초기함수율(初期含水率), 투입량(投入量), 투입기간(投入期間)의 변화(變化)에 따른 Layer drying현상(現象)을 규명(糾明)하는데 있다. Simulation에 사용(使用)된 bin의 크기는 직경(直徑) 2m, 깊이 1.5m이며 송풍(送風)팬의 용량(容量)은 0.5HP이었다. Simulation분석(分析) 결과(結果)를 요약(要約)하면 다음과 같다. (1) Layer drying의 Simulation model을 개발(開發)하였으며 이 Model은 벼의 상온통풍건조(常溫通風乾燥) 실험(實驗)에서 함수량(含水量) 변화(變化)의 이론치(理論値)와 실제실험치(實際實驗値)가 잘 일치(一致)하였다. (2) 곡물투입기간(穀物投入期間) 1일(日)을 Full-bin drying으로 간주(看做)할 때 Layer drying의 건조성능(乾燥性能)은 Full-bin보다 높은 것으로 나타났다. (3) 연속송풍(連續送風)(24시간(時間))을 할 경우(境遇) 곡물투입기간(穀物投入期間)이 증가(增加)함에 따라 건조기간(乾燥期間)의 감소경향(減少傾向)은 단속송풍(斷續送風)인 경우(境遇)보다 적었지만 건조기간(乾燥期間)은 단축(短縮)되었다. 그러나 건조(乾燥)에너지의 소모(消耗)는 단속송풍(斷續送風)일 때보다 크게 나타났다. (4) 단속송풍(斷續送風)(9 : 00AM~6 : 00PM)일 경우(境遇) 곡물투입기간(穀物投入期間)을 증가(增加)시키면 건조기간(乾燥期間)이 크게 줄어 들었다. (5) 곡물(穀物)의 초기함수율(初期含水率)이 21% 이하(以下)일 경우(境遇) 연속(連續) 및 단속송풍(斷續送風)에서 건조기간(乾燥期間)의 차이(差異)가 별로 없었다. (6) 곡물(穀物)의 초기함수율(初期含水率)이 높으면 Full-bin drying에서는 상부층(上部層)에 곡물(穀物)이 변질(變質)될 우려(憂慮)가 있으나 Layer drying에서는 곡물투입량(穀物投入量)을 조절(調節)하면 이것을 방지(防止)할 수 있었다. (7) 건조(乾燥)가 완료(完了)된 후(後) 층별(層別) 최종곡물(最終穀物) 함수율(含水率)은 모든 건조조건(乾燥條件)에서 동일(同一)하였으나 bin의 하부층(下部層)은 과건조(過乾燥) 물상(物象)을 일으켰다.

  • PDF

Complex Terrain and Ecological Heterogeneity (TERRECO): Evaluating Ecosystem Services in Production Versus water Quantity/quality in Mountainous Landscapes (산지복잡지형과 생태적 비균질성: 산지경관의 생산성과 수자원/수질에 관한 생태계 서비스 평가)

  • Kang, Sin-Kyu;Tenhunen, John
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.12 no.4
    • /
    • pp.307-316
    • /
    • 2010
  • Complex terrain refers to irregular surface properties of the earth that influence gradients in climate, lateral transfer of materials, landscape distribution in soils properties, habitat selection of organisms, and via human preferences, the patterning in development of land use. Complex terrain of mountainous areas represents ca. 20% of the Earth's terrestrial surface; and such regions provide fresh water to at least half of humankind. Most major river systems originate in such terrain, and their resources are often associated with socio-economic competition and political disputes. The goals of the TERRECO-IRTG focus on building a bridge between ecosystem understanding in complex terrain and spatial assessments of ecosystem performance with respect to derived ecosystem services. More specifically, a coordinated assessment framework will be developed from landscape to regional scale applications to quantify trade-offs and will be applied to determine how shifts in climate and land use in complex terrain influence naturally derived ecosystem services. Within the scope of TERRECO, the abiotic and biotic studies of water yield and quality, production and biodiversity, soil processing of materials and trace gas emissions in complex terrain are merged. There is a need to quantitatively understand 1) the ecosystem services derived in regions of complex terrain, 2) the process regulation occurred to maintain those services, and 3) the sensitivities defining thresholds critical in stability of these systems. The TERRECO-IRTG is dedicated to joint study of ecosystems in complex terrain from landscape to regional scales. Our objectives are to reveal the spatial patterns in driving variables of essential ecosystem processes involved in ecosystem services of complex terrain region and hence, to evaluate the resulting ecosystem services, and further to provide new tools for understanding and managing such areas.

Strategies about Optimal Measurement Matrix of Environment Factors Inside Plastic Greenhouse (플라스틱온실 내부 환경 인자 다중센서 설치 위치 최적화 전략)

  • Lee, JungKyu;Kang, DongHyun;Oh, SangHoon;Lee, DongHoon
    • Journal of Bio-Environment Control
    • /
    • v.29 no.2
    • /
    • pp.161-170
    • /
    • 2020
  • There is systematic spatial variations in environmental properties due to sensitive reaction to external conditions at plastic greenhouse occupied 99.2% of domestic agricultural facilities. In order to construct 3 dimensional distribution of temperature, relative humidity, CO2 and illuminance, measurement matrix as 3 by 3 by 5 in direction of width, height and length, respectively, dividing indoor space of greenhouse was designed and tested at experimental site. Linear regression analysis was conducted to evaluate optimal estimation method in terms with horizontal and vertical variations. Even though sole measurement point for temperature and relative humidity could be feasible to assess indoor condition, multiple measurement matrix is inevitably required to improve spatial precision at certain time domain such as period of sunrise and sunset. In case with CO2, multiple measurement matrix could not successfully improve the spatial predictability during a whole experimental period. In case with illuminance, prediction performance was getting smaller after a time period of sunrise due to systematic interference such as indoor structure. Thus, multiple sensing methodology was proposed in direction of length at higher height than growing bed, which could compensate estimation error in spatial domain. Appropriate measurement matrix could be constructed considering the transition of stability in indoor environmental properties due to external variations. As a result, optimal measurement matrix should be carefully designed considering flexibility of construction relevant with the type of property, indoor structure, the purpose of crop and the period of growth. For an instance, partial cooling and heating system to save a consumption of energy supplement could be successfully accomplished by the deployment of multiple measurement matrix.

Factors Required to Sustain Pastoral Farming Systems and Forage Supply In Winter-Cold Zones in Canada (캐나다의 동계한냉지역에 있어서 초지개발과 조사료 공급의 활성화에 필요한 요인)

  • Kunelius, H.T.;Fraser, Joanna
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.12 no.3
    • /
    • pp.3-12
    • /
    • 1992
  • Forage grasses and legumes ar$\varepsilon$ the mam component of livestock diets in Canada. There are over 30 million ha of grassland in Canada and there is a large, undeveloped land base in fringe areas suitable for forage production. The short growing s season limits the grassland farming to the southern p parts of Canada. The win!er season is long and in most parts of Canada cold temperatures, fr$\varepsilon$ezmg, and thawing, and diseases exert sever$\varepsilon$ stress on overwintering forage plants. The development of persistent cultivars is essential for sustained production particularly in the fringe areas with short growmg s$\varepsilon$ason. The seasonality of dry matter production is a result of high growth rates in early summ$\varepsilon$r and low dry matter accumulation in late summer and fall. Innovative management practIces a and cultivars with improved regrowth capacity are n necessary to overcome such skewed production pattern and to extend effiectlVe grazmg season l Improved pasture production is an important part of reducing costs in livestock operations and remaining competitive. It is suggested that applying available technology would increase pasture productivity and reduce d$\varepsilon$pendence on stored feeds thus improving profitability of small producers in particeular. Reducing nutrient losses during harv$\varepsilon$stmg, s storage, and feeding is essential for improved production efficiency during confinement. The devclopment of low cost and labor saving methods of ensiling is critical for improved efficiency and profitability of forage based enterprises Livestock industries must respond to consumer preferences for low fat and cholesterol foods. Research and development of entire production systems is emphasized for dev$\varepsilon$loping viabl$\varepsilon$ enterprises. It is increasingly difficult to secure resources for r$\varepsilon$search, education, and extension, and alliane$\varepsilon$s and cooperation must expand among organizations with interests in forage based livestock systems.

  • PDF

Application of Reduce Tillage with a Strip Tiller and its Effect on Soil Erosion Reduction in Chinese Cabbage Cultivation (배추 재배에 있어 경운방법에 따른 작업효율성 및 토양유실 특성 평가)

  • Lee, Jeong-Tae;Lee, Gye-Jun;Ryu, Jong-Soo;Hwang, Seon-Woong;Park, Suk-Hoo;Zhang, Yong-Seon;Jeong, Yeong-Sang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.970-976
    • /
    • 2011
  • Strip tiller equipment was developed to reduce soil erosion in the slope land for highland agricultural area. The equipment consisted of 4 rows strip tillage device and fertilizer applicator. The field was tilled in 10 cm width and in 10 cm depth by the equipment, of which tilled surface was 16.7% of full-width tillage. The working time and fuel consumption of the equipment were $3.8hours\;ha^{-1}$ and $24.4L\;ha^{-1}$ respectively, which were 59% and 74% less than those of the conventional tillage. Fertilizer efficiency of the equipment in cultivation of Chinese cabbage was 1.7, 1.6 and 1.5 times higher in nitrate, phosphorous and potassium respectively, than conventional tillage. When the equipment was used after covering of rye residue, the quantity of runoff was 49~67% lower than the conventional tillage. And the quantity of soil loss were 1.3 and $0.2Mg\;ha^{-1}$ at right after and 30 days after planting of Chinese cabbage respectively, while 11.5 and $4.1Mg\;ha^{-1}$ in conventional tillage. In conclusion, the strip tillage equipment developed in this study can be applicable to slope land, so that soil loss of 90% can be reduced.

Preparation of Halloysite-Based Tubular Media for Enhanced Methylene Blue Adsorption (메틸렌 블루 흡착능 향상을 위한 할로이사이트 기반 튜브형 담체 연구)

  • Jeon, Junyeong;Cho, Yebin;Kim, Jongwook;Shin, Seung Gu;Jeon, Jong-Rok;Lee, Younki
    • Clean Technology
    • /
    • v.27 no.4
    • /
    • pp.359-366
    • /
    • 2021
  • Halloysite nanotubes (HNTs), the multiwalled clay mineral with the composition of Al2Si2O5(OH)4·nH2O, have been highlighted as a low-cost adsorbent for the removal of dyes from wastewater. Although a powder of halloysite presents a high specific surface area, forming media are significantly considered due to sludge-clogging induced by the water-bound agglomeration. However, higher firing temperature to achieve the structural durability of the media and lower utilization rate due to longer penetration depth into the media act as hurdles to increase the dye-adsorption capacity. In this work, the retention of the adsorption capacity of halloysite was evaluated with methylene blue solution after the heat treatment at 750 ℃. In order to improve the utilization rate, tubular media were fabricated by extrusion. The images taken by transmission electron microscopy show that HNTs present excellent structural stability under heat treatment. The HNTs also provide superb capacity retention for MB adsorption (93%, 18.5 mg g-1), while the diatomite and Magnesol® XL show 22% (7.65 mg g-1) and 6% (11.7 mg g-1), respectively. Additionally, compositing with lignin enhances adsorption capacity, and the heat treatment under the hydrogen atmosphere accelerates the adsorption in the early stage. Compared to the rod-type, the tubular halloysite media rapidly increases methylene blue adsorption capacity.

A New High Quality and Yielding Barley Variety "Geungangbori" with Lodging Resistance (겉보리 단간 내도복 다수성 일시 출수형 "건강보리")

  • Hyun, Jong-Nae;Kweon, Soon-Jong;Park, Dong-Su;Ko, Jong-Min;Han, Sang-Ik;Lim, Sea-Gye;Suh, Se-Jung
    • Korean Journal of Breeding Science
    • /
    • v.40 no.4
    • /
    • pp.474-478
    • /
    • 2008
  • A new covered barley variety, "Geungangbori" was developed from the cross between Milyang 55 which have lodging tolerance and easy brittleness and Suweon 260 with good quality by barley breeding team in the Yeongnam Agricultural Research Institute (YARI) in 2002. A promising line, YMB3855-3B-14-1-1-1, was selected in 1999. It was designated as the name of Milyang 110. It was prominent and had good result from regional adaptation yield trials (RAT) for three years from 2000 to 2002 and released as the name of "Geungangbori". Geungangbori is resistant to barley yellow mosaic virus and moderately resistant to powdery mildow. The average maturing date was same with Olbori on paddy field in regional adaptation yield trials for 2000-2002. Its culm length is 17 cm shorter than that of Olbori and the spike length is 4.4cm, it's longer than olbori. The 1,000 grain weight of Geungangbori was 34 g, same as Olbori, but the number of spikes per $m^2$ and test weight ware lower than those of Olbori. The yield potential of Geungangbori was 4.22 MT/ha on paddy in regional adaptation yield trials for 2000-2002. which was 7% higher than that of Olbori. The cooking quality of Geungangbori were similar to Olbori such as water absorption rate and expansion rate. But the crude protein content is lower than Olbori. This variety is suitable for double cropping system with rice in the southern part of the Korean Peninsula.

Development of a deep neural network model to estimate solar radiation using temperature and precipitation (온도와 강수를 이용하여 일별 일사량을 추정하기 위한 심층 신경망 모델 개발)

  • Kang, DaeGyoon;Hyun, Shinwoo;Kim, Kwang Soo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.2
    • /
    • pp.85-96
    • /
    • 2019
  • Solar radiation is an important variable for estimation of energy balance and water cycle in natural and agricultural ecosystems. A deep neural network (DNN) model has been developed in order to estimate the daily global solar radiation. Temperature and precipitation, which would have wider availability from weather stations than other variables such as sunshine duration, were used as inputs to the DNN model. Five-fold cross-validation was applied to train and test the DNN models. Meteorological data at 15 weather stations were collected for a long term period, e.g., > 30 years in Korea. The DNN model obtained from the cross-validation had relatively small value of RMSE ($3.75MJ\;m^{-2}\;d^{-1}$) for estimates of the daily solar radiation at the weather station in Suwon. The DNN model explained about 68% of variation in observed solar radiation at the Suwon weather station. It was found that the measurements of solar radiation in 1985 and 1998 were considerably low for a small period of time compared with sunshine duration. This suggested that assessment of the quality for the observation data for solar radiation would be needed in further studies. When data for those years were excluded from the data analysis, the DNN model had slightly greater degree of agreement statistics. For example, the values of $R^2$ and RMSE were 0.72 and $3.55MJ\;m^{-2}\;d^{-1}$, respectively. Our results indicate that a DNN would be useful for the development a solar radiation estimation model using temperature and precipitation, which are usually available for downscaled scenario data for future climate conditions. Thus, such a DNN model would be useful for the impact assessment of climate change on crop production where solar radiation is used as a required input variable to a crop model.

Smart farm development strategy suitable for domestic situation -Focusing on ICT technical characteristics for the development of the industry6.0- (국내 실정에 적합한 스마트팜 개발 전략 -6차산업의 발전을 위한 ICT 기술적 특성을 중심으로-)

  • Han, Sang-Ho;Joo, Hyung-Kun
    • Journal of Digital Convergence
    • /
    • v.20 no.4
    • /
    • pp.147-157
    • /
    • 2022
  • This study tried to propose a smart farm technology strategy suitable for the domestic situation, focusing on the differentiation suitable for the domestic situation of ICT technology. In the case of advanced countries in the overseas agricultural industry, it was confirmed that they focused on the development of a specific stage that reflected the geographical characteristics of each country, the characteristics of the agricultural industry, and the characteristics of the people's demand. Confirmed that no enemy development is being performed. Therefore, in response to problems such as a rapid decrease in the domestic rural population, aging population, loss of agricultural price competitiveness, increase in fallow land, and decrease in use rate of arable land, this study aims to develop smart farm ICT technology in the future to create quality agricultural products and have price competitiveness. It was suggested that the smart farm should be promoted by paying attention to the excellent performance, ease of use due to the aging of the labor force, and economic feasibility suitable for a small business scale. First, in terms of economic feasibility, the ICT technology is configured by selecting only the functions necessary for the small farm household (primary) business environment, and the smooth communication system with these is applied to the ICT technology to gradually update the functions required by the actual farmhouse. suggested that it may contribute to the reduction. Second, in terms of performance, it is suggested that the operation accuracy can be increased if attention is paid to improving the communication function of ICT, such as adjusting the difficulty of big data suitable for the aging population in Korea, using a language suitable for them, and setting an algorithm that reflects their prediction tendencies. Third, the level of ease of use. Smart farms based on ICT technology for the development of the Industry6.0 (1.0(Agriculture, Forestry) + 2.0(Agricultural and Water & Water Processing) + 3.0 (Service, Rural Experience, SCM)) perform operations according to specific commands, finally suggested that ease of use can be promoted by presetting and standardizing devices based on big data configuration customized for each regional environment.

Changes in Abscisic Acid, Carbohydrate, and Glucosinolate Metabolites in Kimchi Cabbage Treated with Glutamic Acid Foliar Application under Extremely Low Temperature Conditions (이상저온 시 글루탐산 엽면 처리에 의한 배추의 ABA, 탄수화물 및 Glucosinolate 대사체 변화)

  • Sim, Ha Seon;Jo, Jung Su;Woo, Ui Jeong;Moon, Yu Hyun;Lee, Tae Yeon;Lee, Hee Ju;Wi, Seung Hwan;Kim, Sung Kyeom
    • Journal of Bio-Environment Control
    • /
    • v.31 no.3
    • /
    • pp.170-179
    • /
    • 2022
  • Glutamic acid is a precursor of essential amino acids that play an important role in plant growth and development. It is one of the biostimulants that reduce cold stress damage by stimulating biosynthetic pathways leading to cryoprotectants. This study evaluated the effects of glutamic acid foliar application on Kimchi cabbage under low-temperature stress. There were six treatments, combining three photo-/dark periods temperature levels (11/-1℃ extremely low, E; 16/4℃ moderately low, M; and 21/9℃ optimal, O) with and without glutamic acid foliar application (0 and 10 mg·L-1; Glu 0 and Glu 10). Glutamic acid foliar application was sprayed once 10 days after transplanting, and then temperature treatment immediately after glutamic acid foliar application was conducted for up to four days. After four days of treatment, abscisic acid (ABA), phaseic acid (PA), dihydrophaseic acid (DPA), and abscisic acid-glucose ester (ABA-GE) contents were higher with Glu 10 treatment than Glu 0 treatment in M treatment. Glucose content was highest in E with Glu 10 treatment (52.1 mg·100 g-1 dry weight), while fructose content was highest in O with Glu 0 treatment (134.6 mg·100 g-1 dry weight). The contents of glucolepiddin (GLP), glucobrassicin (GBS), 4-methoxyglucobrassicin (4MGBS), neoglucobrassicin (GNBS), and gluconasturtiin (GNS) were highest among all treatments in E with Glu 10 treatments (0.72, 2.05, 1.67, 9.40 and 0.85 µmol·g-1 dry weight). After two days of treatment, rapid changes in PA and DPA contents of E with Glu 10 treatments were confirmed, and several individual glucosinolate contents (GLP, GBS, 4MGBS, GNBS, and GNS) were significantly different depending on low temperature and glutamic acid treatment. In addition, the content of fructose was significantly lower than that of O treatment in E and M treatments after four days of treatment. Therefore, although the changes in PA, DPA, glucose, fructose, and individual glucosinolates according to low temperature and glutamic acid foliar treatment were shown. A clear correlation between low temperature and glutamic acid effects could not be evaluated. Results indicated that Brassica crops are cryophilic vegetables, do not react sensitively to low temperatures, and mostly have cold resistance.